Loading…

A Compact Model for Valence-Band Electron Tunneling Current in Partially Depleted SOI MOSFETs

The valence-band electron (EVB) tunneling current in partially depleted silicon-on-insulator (SOI) MOSFETs increases as the gate oxide gets thinner and affects the dynamic behavior of devices and circuits. We present an engineering model of EVB tunneling current based on the surface-potential formul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2007-02, Vol.54 (2), p.316-322
Main Authors: Wu, W., Xin Li, Gildenblat, G., Workman, G.O., Veeraraghavan, S., McAndrew, C.C., van Langevelde, R., Smit, G.D.J., Scholten, A.J., Klaassen, D.B.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The valence-band electron (EVB) tunneling current in partially depleted silicon-on-insulator (SOI) MOSFETs increases as the gate oxide gets thinner and affects the dynamic behavior of devices and circuits. We present an engineering model of EVB tunneling current based on the surface-potential formulation. The new model is implemented in a SOI MOSFET compact model and is used to study the impact of EVB tunneling on circuit performance. Simulations of stacked logic gates show that the EVB tunneling current not only boosts circuit switching speed but also mitigates the history dependence of propagation delays
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2006.888750