Loading…
Photonic and phononic quasicrystals
This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotation...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2007-07, Vol.40 (13), p.R229-R247 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813 |
container_end_page | R247 |
container_issue | 13 |
container_start_page | R229 |
container_title | Journal of physics. D, Applied physics |
container_volume | 40 |
creator | Steurer, Walter Sutter-Widmer, Daniel |
description | This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling. |
doi_str_mv | 10.1088/0022-3727/40/13/R01 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18880186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30066849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKufwEtB9CBsd7LJTrJHKf6DgiJ6Dmk2oSvb3W2ye-i3N7WlHhRPw8z83uPNEHJJYUpByhQgyxImMpFySClL34AekRFlSBPkyI7J6ECckrMQPgEgR0lH5Op12fZtU5mJbspJt2yb72Y96FAZvwm9rsM5OXGx2It9HZOPh_v32VMyf3l8nt3NE8MZ75MCUKAxAIIXlBWuMFlpMc9MXooSHSLozDFDS2HRMpo74FQ4XCyKYqFjGDYmNzvfzrfrwYZerapgbF3rxrZDUAwAUfIigmwHGt-G4K1Tna9W2m8UBbV9iNqeq7bnKh4nTMWHRNX13l4Ho2vndWOq8COVUgKVGLnbHVe13WH7h6HqShfh6W_4vxRfeHZ5uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30066849</pqid></control><display><type>article</type><title>Photonic and phononic quasicrystals</title><source>Institute of Physics</source><creator>Steurer, Walter ; Sutter-Widmer, Daniel</creator><creatorcontrib>Steurer, Walter ; Sutter-Widmer, Daniel</creatorcontrib><description>This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/40/13/R01</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical materials ; Optics ; Photonic bandgap materials ; Physics</subject><ispartof>Journal of physics. D, Applied physics, 2007-07, Vol.40 (13), p.R229-R247</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813</citedby><cites>FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18880186$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Steurer, Walter</creatorcontrib><creatorcontrib>Sutter-Widmer, Daniel</creatorcontrib><title>Photonic and phononic quasicrystals</title><title>Journal of physics. D, Applied physics</title><description>This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Physics</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKufwEtB9CBsd7LJTrJHKf6DgiJ6Dmk2oSvb3W2ye-i3N7WlHhRPw8z83uPNEHJJYUpByhQgyxImMpFySClL34AekRFlSBPkyI7J6ECckrMQPgEgR0lH5Op12fZtU5mJbspJt2yb72Y96FAZvwm9rsM5OXGx2It9HZOPh_v32VMyf3l8nt3NE8MZ75MCUKAxAIIXlBWuMFlpMc9MXooSHSLozDFDS2HRMpo74FQ4XCyKYqFjGDYmNzvfzrfrwYZerapgbF3rxrZDUAwAUfIigmwHGt-G4K1Tna9W2m8UBbV9iNqeq7bnKh4nTMWHRNX13l4Ho2vndWOq8COVUgKVGLnbHVe13WH7h6HqShfh6W_4vxRfeHZ5uQ</recordid><startdate>20070707</startdate><enddate>20070707</enddate><creator>Steurer, Walter</creator><creator>Sutter-Widmer, Daniel</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20070707</creationdate><title>Photonic and phononic quasicrystals</title><author>Steurer, Walter ; Sutter-Widmer, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steurer, Walter</creatorcontrib><creatorcontrib>Sutter-Widmer, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steurer, Walter</au><au>Sutter-Widmer, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic and phononic quasicrystals</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2007-07-07</date><risdate>2007</risdate><volume>40</volume><issue>13</issue><spage>R229</spage><epage>R247</epage><pages>R229-R247</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/40/13/R01</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2007-07, Vol.40 (13), p.R229-R247 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_pascalfrancis_primary_18880186 |
source | Institute of Physics |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Optical materials Optics Photonic bandgap materials Physics |
title | Photonic and phononic quasicrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20and%20phononic%20quasicrystals&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Steurer,%20Walter&rft.date=2007-07-07&rft.volume=40&rft.issue=13&rft.spage=R229&rft.epage=R247&rft.pages=R229-R247&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/40/13/R01&rft_dat=%3Cproquest_pasca%3E30066849%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-90676cc00749139f9c2de652c5d7d6f660a2f3c1d7e6e315f0417f6bb99ba6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30066849&rft_id=info:pmid/&rfr_iscdi=true |