Loading…
SQUID Developments for the Gravitational Wave Antenna MiniGRAIL
We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabr...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.764-767 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893 |
container_end_page | 767 |
container_issue | 2 |
container_start_page | 764 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 17 |
creator | Pleikies, J.. Usenko, O.. Kuit, K.H. Flokstra, J.. de Waard, A.. Frossati, G.. |
description | We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h. |
doi_str_mv | 10.1109/TASC.2007.898067 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19010307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277664</ieee_id><sourcerecordid>2544755011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</originalsourceid><addsrcrecordid>eNp90c1LwzAYBvAiCur0Lngpgh-XzjdfTXKSMXUOJqJTPIY0e4uVrp1JN_C_t3Wi4GGnBN7f-xDyRNERgT4hoC-fB9NhnwLIvtIKUrkV7REhVEIFEdvtHQRJFKVsN9oP4R2AcMXFXnQ1fXwZX8fXuMKyXsyxakKc1z5u3jAeebsqGtsUdWXL-NWuMB5UDVaVje-Lqhg9DcaTg2gnt2XAw5-zF73c3jwP75LJw2g8HEwSx4VqEgci41prDkwCl-gYz6jImXSoBKE0o26GaTvSPMscMueAKCk4mbGZIEqzXnS-zl34-mOJoTHzIjgsS1thvQxGtUZKwVQrzzZKljIBQLvIi42QpJoyTaWWLT35R9_rpW9_JRjdvp6C_kawRs7XIXjMzcIXc-s_DQHTdWS6jkzXkVl31K6c_uTa4GyZe1u5IvztaSDAoHPHa1cg4u-YUynTlLMvPnWWGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912220997</pqid></control><display><type>article</type><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><source>IEEE Xplore (Online service)</source><creator>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</creator><creatorcontrib>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</creatorcontrib><description>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.898067</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Cooling ; Cooling fins ; Detectors ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Gravitational wave antenna ; Gravitational wave antennas ; Gravitational waves ; Inductors ; Magnetic devices ; Noise ; Resistors ; Resonance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Shunt (electrical) ; SQUIDs ; Superconducting devices ; Superconducting quantum interference devices ; Temperature distribution ; Temperature sensors ; Transformers and inductors</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.764-767</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</citedby><cites>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19010307$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pleikies, J..</creatorcontrib><creatorcontrib>Usenko, O..</creatorcontrib><creatorcontrib>Kuit, K.H.</creatorcontrib><creatorcontrib>Flokstra, J..</creatorcontrib><creatorcontrib>de Waard, A..</creatorcontrib><creatorcontrib>Frossati, G..</creatorcontrib><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Cooling</subject><subject>Cooling fins</subject><subject>Detectors</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gravitational wave antenna</subject><subject>Gravitational wave antennas</subject><subject>Gravitational waves</subject><subject>Inductors</subject><subject>Magnetic devices</subject><subject>Noise</subject><subject>Resistors</subject><subject>Resonance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Shunt (electrical)</subject><subject>SQUIDs</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>Transformers and inductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAYBvAiCur0Lngpgh-XzjdfTXKSMXUOJqJTPIY0e4uVrp1JN_C_t3Wi4GGnBN7f-xDyRNERgT4hoC-fB9NhnwLIvtIKUrkV7REhVEIFEdvtHQRJFKVsN9oP4R2AcMXFXnQ1fXwZX8fXuMKyXsyxakKc1z5u3jAeebsqGtsUdWXL-NWuMB5UDVaVje-Lqhg9DcaTg2gnt2XAw5-zF73c3jwP75LJw2g8HEwSx4VqEgci41prDkwCl-gYz6jImXSoBKE0o26GaTvSPMscMueAKCk4mbGZIEqzXnS-zl34-mOJoTHzIjgsS1thvQxGtUZKwVQrzzZKljIBQLvIi42QpJoyTaWWLT35R9_rpW9_JRjdvp6C_kawRs7XIXjMzcIXc-s_DQHTdWS6jkzXkVl31K6c_uTa4GyZe1u5IvztaSDAoHPHa1cg4u-YUynTlLMvPnWWGA</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Pleikies, J..</creator><creator>Usenko, O..</creator><creator>Kuit, K.H.</creator><creator>Flokstra, J..</creator><creator>de Waard, A..</creator><creator>Frossati, G..</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><author>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Cooling</topic><topic>Cooling fins</topic><topic>Detectors</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gravitational wave antenna</topic><topic>Gravitational wave antennas</topic><topic>Gravitational waves</topic><topic>Inductors</topic><topic>Magnetic devices</topic><topic>Noise</topic><topic>Resistors</topic><topic>Resonance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Shunt (electrical)</topic><topic>SQUIDs</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleikies, J..</creatorcontrib><creatorcontrib>Usenko, O..</creatorcontrib><creatorcontrib>Kuit, K.H.</creatorcontrib><creatorcontrib>Flokstra, J..</creatorcontrib><creatorcontrib>de Waard, A..</creatorcontrib><creatorcontrib>Frossati, G..</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleikies, J..</au><au>Usenko, O..</au><au>Kuit, K.H.</au><au>Flokstra, J..</au><au>de Waard, A..</au><au>Frossati, G..</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>764</spage><epage>767</epage><pages>764-767</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.898067</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.764-767 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_pascalfrancis_primary_19010307 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Coils Cooling Cooling fins Detectors Electrical engineering. Electrical power engineering Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Gravitational wave antenna Gravitational wave antennas Gravitational waves Inductors Magnetic devices Noise Resistors Resonance Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Shunt (electrical) SQUIDs Superconducting devices Superconducting quantum interference devices Temperature distribution Temperature sensors Transformers and inductors |
title | SQUID Developments for the Gravitational Wave Antenna MiniGRAIL |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SQUID%20Developments%20for%20the%20Gravitational%20Wave%20Antenna%20MiniGRAIL&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pleikies,%20J..&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=764&rft.epage=767&rft.pages=764-767&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.898067&rft_dat=%3Cproquest_pasca%3E2544755011%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912220997&rft_id=info:pmid/&rft_ieee_id=4277664&rfr_iscdi=true |