Loading…

SQUID Developments for the Gravitational Wave Antenna MiniGRAIL

We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.764-767
Main Authors: Pleikies, J.., Usenko, O.., Kuit, K.H., Flokstra, J.., de Waard, A.., Frossati, G..
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893
cites cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893
container_end_page 767
container_issue 2
container_start_page 764
container_title IEEE transactions on applied superconductivity
container_volume 17
creator Pleikies, J..
Usenko, O..
Kuit, K.H.
Flokstra, J..
de Waard, A..
Frossati, G..
description We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.
doi_str_mv 10.1109/TASC.2007.898067
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19010307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277664</ieee_id><sourcerecordid>2544755011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</originalsourceid><addsrcrecordid>eNp90c1LwzAYBvAiCur0Lngpgh-XzjdfTXKSMXUOJqJTPIY0e4uVrp1JN_C_t3Wi4GGnBN7f-xDyRNERgT4hoC-fB9NhnwLIvtIKUrkV7REhVEIFEdvtHQRJFKVsN9oP4R2AcMXFXnQ1fXwZX8fXuMKyXsyxakKc1z5u3jAeebsqGtsUdWXL-NWuMB5UDVaVje-Lqhg9DcaTg2gnt2XAw5-zF73c3jwP75LJw2g8HEwSx4VqEgci41prDkwCl-gYz6jImXSoBKE0o26GaTvSPMscMueAKCk4mbGZIEqzXnS-zl34-mOJoTHzIjgsS1thvQxGtUZKwVQrzzZKljIBQLvIi42QpJoyTaWWLT35R9_rpW9_JRjdvp6C_kawRs7XIXjMzcIXc-s_DQHTdWS6jkzXkVl31K6c_uTa4GyZe1u5IvztaSDAoHPHa1cg4u-YUynTlLMvPnWWGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912220997</pqid></control><display><type>article</type><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><source>IEEE Xplore (Online service)</source><creator>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</creator><creatorcontrib>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</creatorcontrib><description>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.898067</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Cooling ; Cooling fins ; Detectors ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Gravitational wave antenna ; Gravitational wave antennas ; Gravitational waves ; Inductors ; Magnetic devices ; Noise ; Resistors ; Resonance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Shunt (electrical) ; SQUIDs ; Superconducting devices ; Superconducting quantum interference devices ; Temperature distribution ; Temperature sensors ; Transformers and inductors</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.764-767</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</citedby><cites>FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19010307$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pleikies, J..</creatorcontrib><creatorcontrib>Usenko, O..</creatorcontrib><creatorcontrib>Kuit, K.H.</creatorcontrib><creatorcontrib>Flokstra, J..</creatorcontrib><creatorcontrib>de Waard, A..</creatorcontrib><creatorcontrib>Frossati, G..</creatorcontrib><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Cooling</subject><subject>Cooling fins</subject><subject>Detectors</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gravitational wave antenna</subject><subject>Gravitational wave antennas</subject><subject>Gravitational waves</subject><subject>Inductors</subject><subject>Magnetic devices</subject><subject>Noise</subject><subject>Resistors</subject><subject>Resonance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Shunt (electrical)</subject><subject>SQUIDs</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>Transformers and inductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAYBvAiCur0Lngpgh-XzjdfTXKSMXUOJqJTPIY0e4uVrp1JN_C_t3Wi4GGnBN7f-xDyRNERgT4hoC-fB9NhnwLIvtIKUrkV7REhVEIFEdvtHQRJFKVsN9oP4R2AcMXFXnQ1fXwZX8fXuMKyXsyxakKc1z5u3jAeebsqGtsUdWXL-NWuMB5UDVaVje-Lqhg9DcaTg2gnt2XAw5-zF73c3jwP75LJw2g8HEwSx4VqEgci41prDkwCl-gYz6jImXSoBKE0o26GaTvSPMscMueAKCk4mbGZIEqzXnS-zl34-mOJoTHzIjgsS1thvQxGtUZKwVQrzzZKljIBQLvIi42QpJoyTaWWLT35R9_rpW9_JRjdvp6C_kawRs7XIXjMzcIXc-s_DQHTdWS6jkzXkVl31K6c_uTa4GyZe1u5IvztaSDAoHPHa1cg4u-YUynTlLMvPnWWGA</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Pleikies, J..</creator><creator>Usenko, O..</creator><creator>Kuit, K.H.</creator><creator>Flokstra, J..</creator><creator>de Waard, A..</creator><creator>Frossati, G..</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</title><author>Pleikies, J.. ; Usenko, O.. ; Kuit, K.H. ; Flokstra, J.. ; de Waard, A.. ; Frossati, G..</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Cooling</topic><topic>Cooling fins</topic><topic>Detectors</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gravitational wave antenna</topic><topic>Gravitational wave antennas</topic><topic>Gravitational waves</topic><topic>Inductors</topic><topic>Magnetic devices</topic><topic>Noise</topic><topic>Resistors</topic><topic>Resonance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Shunt (electrical)</topic><topic>SQUIDs</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleikies, J..</creatorcontrib><creatorcontrib>Usenko, O..</creatorcontrib><creatorcontrib>Kuit, K.H.</creatorcontrib><creatorcontrib>Flokstra, J..</creatorcontrib><creatorcontrib>de Waard, A..</creatorcontrib><creatorcontrib>Frossati, G..</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleikies, J..</au><au>Usenko, O..</au><au>Kuit, K.H.</au><au>Flokstra, J..</au><au>de Waard, A..</au><au>Frossati, G..</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SQUID Developments for the Gravitational Wave Antenna MiniGRAIL</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>764</spage><epage>767</epage><pages>764-767</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi 0 /radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.898067</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.764-767
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_19010307
source IEEE Xplore (Online service)
subjects Applied sciences
Coils
Cooling
Cooling fins
Detectors
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Gravitational wave antenna
Gravitational wave antennas
Gravitational waves
Inductors
Magnetic devices
Noise
Resistors
Resonance
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Shunt (electrical)
SQUIDs
Superconducting devices
Superconducting quantum interference devices
Temperature distribution
Temperature sensors
Transformers and inductors
title SQUID Developments for the Gravitational Wave Antenna MiniGRAIL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SQUID%20Developments%20for%20the%20Gravitational%20Wave%20Antenna%20MiniGRAIL&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pleikies,%20J..&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=764&rft.epage=767&rft.pages=764-767&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.898067&rft_dat=%3Cproquest_pasca%3E2544755011%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-c05b49994037047ec34b25f37ce85122b2cde670494bbce3cc0187541d3d51893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912220997&rft_id=info:pmid/&rft_ieee_id=4277664&rfr_iscdi=true