Loading…

Segmentation Framework Based on Label Field Fusion

In this paper, we put forward a novel fusion framework that mixes together label fields instead of observation data as is usually the case. Our framework takes as input two label fields: a quickly estimated and to-be-refined segmentation map and a spatial region map that exhibits the shape of the ma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2007-10, Vol.16 (10), p.2535-2550
Main Authors: Jodoin, P.-M., Mignotte, M., Rosenberger, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we put forward a novel fusion framework that mixes together label fields instead of observation data as is usually the case. Our framework takes as input two label fields: a quickly estimated and to-be-refined segmentation map and a spatial region map that exhibits the shape of the main objects of the scene. These two label fields are fused together with a global energy function that is minimized with a deterministic iterative conditional mode algorithm. As explained in the paper, the energy function may implement a pure fusion strategy or a fusion-reaction function. In the latter case, a data-related term is used to make the optimization problem well posed. We believe that the conceptual simplicity, the small number of parameters, the use of a simple and fast deterministic optimizer that admits a natural implementation on a parallel architecture are among the main advantages of our approach. Our fusion framework is adapted to various computer vision applications among which are motion segmentation, motion estimation and occlusion detection.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.903841