Loading…
Structure of Lagrangian turbulence
A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the...
Saved in:
Published in: | Physics of fluids. A, Fluid dynamics Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93 |
container_end_page | 1843 |
container_issue | 11 |
container_start_page | 1836 |
container_title | Physics of fluids. A, Fluid dynamics |
container_volume | 1 |
creator | Viecelli, James A. |
description | A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations. |
doi_str_mv | 10.1063/1.857509 |
format | article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19284487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_857509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtYq-BNKQdDD1nxvcpTiFxQ8qOcwO5vUlbpbkqzgv3fLSj0InoYZHmaYl5BzRheManHNFkaVitoDMuFMi0JRJg7JhBprC8OZOCYnKb1TyiWTckLmzzn2mPvoZ12YrWAdoV030M6GUdVvfIv-lBwF2CR_9lOn5PXu9mX5UKye7h-XN6sChaK5qDijwZRceesBKOO-UhDU0CDauuagqa5ZrXldAsXKSFOVlWGaBs0sghVTMh_3dik3LmGTPb5h17Yes1NCSc7FgC5HhLFLKfrgtrH5gPjlGHW7ABxzYwADvRjpFhLCJgyfYZN-veVGSlMO7mp0u5OQm67dm88u7ve5bR3-s3_ufwO2IXSr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of Lagrangian turbulence</title><source>AIP Digital Archive</source><creator>Viecelli, James A.</creator><creatorcontrib>Viecelli, James A.</creatorcontrib><description>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</description><identifier>ISSN: 0899-8213</identifier><identifier>EISSN: 2163-5013</identifier><identifier>DOI: 10.1063/1.857509</identifier><identifier>CODEN: PFADEB</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics AIP</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; ASYMPTOTIC SOLUTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; LAGRANGIAN FUNCTION ; MIXING ; MOMENT OF INERTIA ; NAVIER-STOKES EQUATIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLES ; Physics ; RICHARDSON EQUATION ; SCALING LAWS ; STRUCTURE FUNCTIONS ; TRAJECTORIES ; TURBULENCE ; Turbulent flows, convection, and heat transfer ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Physics of fluids. A, Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843</ispartof><rights>American Institute of Physics</rights><rights>1991 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</citedby><cites>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19284487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5354223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Viecelli, James A.</creatorcontrib><title>Structure of Lagrangian turbulence</title><title>Physics of fluids. A, Fluid dynamics</title><description>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MIXING</subject><subject>MOMENT OF INERTIA</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLES</subject><subject>Physics</subject><subject>RICHARDSON EQUATION</subject><subject>SCALING LAWS</subject><subject>STRUCTURE FUNCTIONS</subject><subject>TRAJECTORIES</subject><subject>TURBULENCE</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0899-8213</issn><issn>2163-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtYq-BNKQdDD1nxvcpTiFxQ8qOcwO5vUlbpbkqzgv3fLSj0InoYZHmaYl5BzRheManHNFkaVitoDMuFMi0JRJg7JhBprC8OZOCYnKb1TyiWTckLmzzn2mPvoZ12YrWAdoV030M6GUdVvfIv-lBwF2CR_9lOn5PXu9mX5UKye7h-XN6sChaK5qDijwZRceesBKOO-UhDU0CDauuagqa5ZrXldAsXKSFOVlWGaBs0sghVTMh_3dik3LmGTPb5h17Yes1NCSc7FgC5HhLFLKfrgtrH5gPjlGHW7ABxzYwADvRjpFhLCJgyfYZN-veVGSlMO7mp0u5OQm67dm88u7ve5bR3-s3_ufwO2IXSr</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Viecelli, James A.</creator><general>American Institute of Physics AIP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19891101</creationdate><title>Structure of Lagrangian turbulence</title><author>Viecelli, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MIXING</topic><topic>MOMENT OF INERTIA</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLES</topic><topic>Physics</topic><topic>RICHARDSON EQUATION</topic><topic>SCALING LAWS</topic><topic>STRUCTURE FUNCTIONS</topic><topic>TRAJECTORIES</topic><topic>TURBULENCE</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Viecelli, James A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids. A, Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viecelli, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Lagrangian turbulence</atitle><jtitle>Physics of fluids. A, Fluid dynamics</jtitle><date>1989-11-01</date><risdate>1989</risdate><volume>1</volume><issue>11</issue><spage>1836</spage><epage>1843</epage><pages>1836-1843</pages><issn>0899-8213</issn><eissn>2163-5013</eissn><coden>PFADEB</coden><abstract>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics AIP</pub><doi>10.1063/1.857509</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8213 |
ispartof | Physics of fluids. A, Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843 |
issn | 0899-8213 2163-5013 |
language | eng |
recordid | cdi_pascalfrancis_primary_19284487 |
source | AIP Digital Archive |
subjects | 640410 - Fluid Physics- General Fluid Dynamics ASYMPTOTIC SOLUTIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIFFERENTIAL EQUATIONS EQUATIONS Exact sciences and technology Fluid dynamics FUNCTIONS Fundamental areas of phenomenology (including applications) LAGRANGIAN FUNCTION MIXING MOMENT OF INERTIA NAVIER-STOKES EQUATIONS PARTIAL DIFFERENTIAL EQUATIONS PARTICLES Physics RICHARDSON EQUATION SCALING LAWS STRUCTURE FUNCTIONS TRAJECTORIES TURBULENCE Turbulent flows, convection, and heat transfer TWO-DIMENSIONAL CALCULATIONS |
title | Structure of Lagrangian turbulence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Lagrangian%20turbulence&rft.jtitle=Physics%20of%20fluids.%20A,%20Fluid%20dynamics&rft.au=Viecelli,%20James%20A.&rft.date=1989-11-01&rft.volume=1&rft.issue=11&rft.spage=1836&rft.epage=1843&rft.pages=1836-1843&rft.issn=0899-8213&rft.eissn=2163-5013&rft.coden=PFADEB&rft_id=info:doi/10.1063/1.857509&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_857509%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |