Loading…

Structure of Lagrangian turbulence

A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids. A, Fluid dynamics Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843
Main Author: Viecelli, James A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93
cites cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93
container_end_page 1843
container_issue 11
container_start_page 1836
container_title Physics of fluids. A, Fluid dynamics
container_volume 1
creator Viecelli, James A.
description A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.
doi_str_mv 10.1063/1.857509
format article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19284487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_857509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtYq-BNKQdDD1nxvcpTiFxQ8qOcwO5vUlbpbkqzgv3fLSj0InoYZHmaYl5BzRheManHNFkaVitoDMuFMi0JRJg7JhBprC8OZOCYnKb1TyiWTckLmzzn2mPvoZ12YrWAdoV030M6GUdVvfIv-lBwF2CR_9lOn5PXu9mX5UKye7h-XN6sChaK5qDijwZRceesBKOO-UhDU0CDauuagqa5ZrXldAsXKSFOVlWGaBs0sghVTMh_3dik3LmGTPb5h17Yes1NCSc7FgC5HhLFLKfrgtrH5gPjlGHW7ABxzYwADvRjpFhLCJgyfYZN-veVGSlMO7mp0u5OQm67dm88u7ve5bR3-s3_ufwO2IXSr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of Lagrangian turbulence</title><source>AIP Digital Archive</source><creator>Viecelli, James A.</creator><creatorcontrib>Viecelli, James A.</creatorcontrib><description>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</description><identifier>ISSN: 0899-8213</identifier><identifier>EISSN: 2163-5013</identifier><identifier>DOI: 10.1063/1.857509</identifier><identifier>CODEN: PFADEB</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics AIP</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; ASYMPTOTIC SOLUTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; LAGRANGIAN FUNCTION ; MIXING ; MOMENT OF INERTIA ; NAVIER-STOKES EQUATIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLES ; Physics ; RICHARDSON EQUATION ; SCALING LAWS ; STRUCTURE FUNCTIONS ; TRAJECTORIES ; TURBULENCE ; Turbulent flows, convection, and heat transfer ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Physics of fluids. A, Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843</ispartof><rights>American Institute of Physics</rights><rights>1991 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</citedby><cites>FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19284487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5354223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Viecelli, James A.</creatorcontrib><title>Structure of Lagrangian turbulence</title><title>Physics of fluids. A, Fluid dynamics</title><description>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MIXING</subject><subject>MOMENT OF INERTIA</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLES</subject><subject>Physics</subject><subject>RICHARDSON EQUATION</subject><subject>SCALING LAWS</subject><subject>STRUCTURE FUNCTIONS</subject><subject>TRAJECTORIES</subject><subject>TURBULENCE</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0899-8213</issn><issn>2163-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtYq-BNKQdDD1nxvcpTiFxQ8qOcwO5vUlbpbkqzgv3fLSj0InoYZHmaYl5BzRheManHNFkaVitoDMuFMi0JRJg7JhBprC8OZOCYnKb1TyiWTckLmzzn2mPvoZ12YrWAdoV030M6GUdVvfIv-lBwF2CR_9lOn5PXu9mX5UKye7h-XN6sChaK5qDijwZRceesBKOO-UhDU0CDauuagqa5ZrXldAsXKSFOVlWGaBs0sghVTMh_3dik3LmGTPb5h17Yes1NCSc7FgC5HhLFLKfrgtrH5gPjlGHW7ABxzYwADvRjpFhLCJgyfYZN-veVGSlMO7mp0u5OQm67dm88u7ve5bR3-s3_ufwO2IXSr</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Viecelli, James A.</creator><general>American Institute of Physics AIP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19891101</creationdate><title>Structure of Lagrangian turbulence</title><author>Viecelli, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MIXING</topic><topic>MOMENT OF INERTIA</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLES</topic><topic>Physics</topic><topic>RICHARDSON EQUATION</topic><topic>SCALING LAWS</topic><topic>STRUCTURE FUNCTIONS</topic><topic>TRAJECTORIES</topic><topic>TURBULENCE</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Viecelli, James A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids. A, Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viecelli, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Lagrangian turbulence</atitle><jtitle>Physics of fluids. A, Fluid dynamics</jtitle><date>1989-11-01</date><risdate>1989</risdate><volume>1</volume><issue>11</issue><spage>1836</spage><epage>1843</epage><pages>1836-1843</pages><issn>0899-8213</issn><eissn>2163-5013</eissn><coden>PFADEB</coden><abstract>A structure function describing the geometrical properties of Lagrangian turbulence is proposed. This function yields the asymptotic mixing properties of inertial range turbulence. The form of the structure function is deduced from Richardson’s particle dispersion law. Scaling relationships for the mixing volume fraction, the surface area of boundaries between materials, and the chord lengths defined by the intersection points of a ray with material boundaries are obtained. Scaling laws are also deduced for the area fraction, perimeter length, and chord lengths in a two‐dimensional section, and for the trajectory of a single particle. The predictions for the two‐dimensional case have been verified in several examples of mixing, using data obtained from numerical integration of the Navier–Stokes equations.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics AIP</pub><doi>10.1063/1.857509</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-8213
ispartof Physics of fluids. A, Fluid dynamics, 1989-11, Vol.1 (11), p.1836-1843
issn 0899-8213
2163-5013
language eng
recordid cdi_pascalfrancis_primary_19284487
source AIP Digital Archive
subjects 640410 - Fluid Physics- General Fluid Dynamics
ASYMPTOTIC SOLUTIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DIFFERENTIAL EQUATIONS
EQUATIONS
Exact sciences and technology
Fluid dynamics
FUNCTIONS
Fundamental areas of phenomenology (including applications)
LAGRANGIAN FUNCTION
MIXING
MOMENT OF INERTIA
NAVIER-STOKES EQUATIONS
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLES
Physics
RICHARDSON EQUATION
SCALING LAWS
STRUCTURE FUNCTIONS
TRAJECTORIES
TURBULENCE
Turbulent flows, convection, and heat transfer
TWO-DIMENSIONAL CALCULATIONS
title Structure of Lagrangian turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Lagrangian%20turbulence&rft.jtitle=Physics%20of%20fluids.%20A,%20Fluid%20dynamics&rft.au=Viecelli,%20James%20A.&rft.date=1989-11-01&rft.volume=1&rft.issue=11&rft.spage=1836&rft.epage=1843&rft.pages=1836-1843&rft.issn=0899-8213&rft.eissn=2163-5013&rft.coden=PFADEB&rft_id=info:doi/10.1063/1.857509&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_857509%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-b210f8725e9eaa012eb5af59eacc9dd2a606d1d62d7a0cb848b7b8160f619ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true