Loading…

MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM

Teo el at. (1989) proposed and numerically solved a feedback control problem for a partially observed linear system with Poisson process noise. In this paper, we suggest a modified control structure and show that the modification leads to a superior control scheme. The discussion is illustrated with...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization 1990-07, Vol.16 (1), p.1-13
Main Authors: BROWN, TIMOTHY C., PALLANT, DIANA L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73
cites cdi_FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73
container_end_page 13
container_issue 1
container_start_page 1
container_title Engineering optimization
container_volume 16
creator BROWN, TIMOTHY C.
PALLANT, DIANA L.
description Teo el at. (1989) proposed and numerically solved a feedback control problem for a partially observed linear system with Poisson process noise. In this paper, we suggest a modified control structure and show that the modification leads to a superior control scheme. The discussion is illustrated with examples which show the benefits of the modifications and extensions. The paper also demonstrates the benefits of martingale stochastic calculus.
doi_str_mv 10.1080/03052159008941161
format article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_19677035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19677035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFsuHqtfkrZpwEvXda7YLqOroqeStglMunWkA9m_t2OKB_H0Hr7n-V54EbolcE8ggAdg4FHiCYBAuIT45AyNCFDhAOXsHI2Od2cA3i7RVd9_ABA2oCM0z2QeY7nAIV6GeZGEafqO5WQV56_xFK8KGc3DVZFEWC6LJAtTPIvj6SSMnnEkF0UuU7zM5SSNs2t0YVTb65vvHKOXWVxEcyeVT0kUpk5NXbZ3hNf4lao49fzKZUJTLXjletptFIeaB7oJuCaiMka5FTWUUxUYl3JoNKtNxdkYkdPf2nZ9b7Upd3a9UfZQEiiPU5R_phicu5OzU32tWmPVtl73v6LwOQfmDdzjiVtvTWc36rOzbVPu1aHt7I_E_q_5Ao9Gaho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM</title><source>Taylor &amp; Francis Engineering, Computing &amp; Technology Archive</source><creator>BROWN, TIMOTHY C. ; PALLANT, DIANA L.</creator><creatorcontrib>BROWN, TIMOTHY C. ; PALLANT, DIANA L.</creatorcontrib><description>Teo el at. (1989) proposed and numerically solved a feedback control problem for a partially observed linear system with Poisson process noise. In this paper, we suggest a modified control structure and show that the modification leads to a superior control scheme. The discussion is illustrated with examples which show the benefits of the modifications and extensions. The paper also demonstrates the benefits of martingale stochastic calculus.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/03052159008941161</identifier><identifier>CODEN: EGOPAX</identifier><language>eng</language><publisher>Amsterdam: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control ; Control theory. Systems ; Exact sciences and technology ; feedback ; martingales ; Optimal control ; point processes ; stochastic calculus</subject><ispartof>Engineering optimization, 1990-07, Vol.16 (1), p.1-13</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73</citedby><cites>FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03052159008941161$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03052159008941161$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59901,60690</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19677035$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BROWN, TIMOTHY C.</creatorcontrib><creatorcontrib>PALLANT, DIANA L.</creatorcontrib><title>MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM</title><title>Engineering optimization</title><description>Teo el at. (1989) proposed and numerically solved a feedback control problem for a partially observed linear system with Poisson process noise. In this paper, we suggest a modified control structure and show that the modification leads to a superior control scheme. The discussion is illustrated with examples which show the benefits of the modifications and extensions. The paper also demonstrates the benefits of martingale stochastic calculus.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>feedback</subject><subject>martingales</subject><subject>Optimal control</subject><subject>point processes</subject><subject>stochastic calculus</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFsuHqtfkrZpwEvXda7YLqOroqeStglMunWkA9m_t2OKB_H0Hr7n-V54EbolcE8ggAdg4FHiCYBAuIT45AyNCFDhAOXsHI2Od2cA3i7RVd9_ABA2oCM0z2QeY7nAIV6GeZGEafqO5WQV56_xFK8KGc3DVZFEWC6LJAtTPIvj6SSMnnEkF0UuU7zM5SSNs2t0YVTb65vvHKOXWVxEcyeVT0kUpk5NXbZ3hNf4lao49fzKZUJTLXjletptFIeaB7oJuCaiMka5FTWUUxUYl3JoNKtNxdkYkdPf2nZ9b7Upd3a9UfZQEiiPU5R_phicu5OzU32tWmPVtl73v6LwOQfmDdzjiVtvTWc36rOzbVPu1aHt7I_E_q_5Ao9Gaho</recordid><startdate>19900701</startdate><enddate>19900701</enddate><creator>BROWN, TIMOTHY C.</creator><creator>PALLANT, DIANA L.</creator><general>Taylor &amp; Francis Group</general><general>Gordon and Breach</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900701</creationdate><title>MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM</title><author>BROWN, TIMOTHY C. ; PALLANT, DIANA L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>feedback</topic><topic>martingales</topic><topic>Optimal control</topic><topic>point processes</topic><topic>stochastic calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BROWN, TIMOTHY C.</creatorcontrib><creatorcontrib>PALLANT, DIANA L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BROWN, TIMOTHY C.</au><au>PALLANT, DIANA L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM</atitle><jtitle>Engineering optimization</jtitle><date>1990-07-01</date><risdate>1990</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><coden>EGOPAX</coden><abstract>Teo el at. (1989) proposed and numerically solved a feedback control problem for a partially observed linear system with Poisson process noise. In this paper, we suggest a modified control structure and show that the modification leads to a superior control scheme. The discussion is illustrated with examples which show the benefits of the modifications and extensions. The paper also demonstrates the benefits of martingale stochastic calculus.</abstract><cop>Amsterdam</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03052159008941161</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-215X
ispartof Engineering optimization, 1990-07, Vol.16 (1), p.1-13
issn 0305-215X
1029-0273
language eng
recordid cdi_pascalfrancis_primary_19677035
source Taylor & Francis Engineering, Computing & Technology Archive
subjects Applied sciences
Computer science
control theory
systems
Control
Control theory. Systems
Exact sciences and technology
feedback
martingales
Optimal control
point processes
stochastic calculus
title MORE ON A PARTIALLY OBSERVED STOCHASTIC OPTIMAL FEEDBACK CONTROL PROBLEM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MORE%20ON%20A%20PARTIALLY%20OBSERVED%20STOCHASTIC%20OPTIMAL%20FEEDBACK%20CONTROL%20PROBLEM&rft.jtitle=Engineering%20optimization&rft.au=BROWN,%20TIMOTHY%20C.&rft.date=1990-07-01&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0305-215X&rft.eissn=1029-0273&rft.coden=EGOPAX&rft_id=info:doi/10.1080/03052159008941161&rft_dat=%3Cpascalfrancis_infor%3E19677035%3C/pascalfrancis_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-95d6bab7256b439e2e97b45e4da70c78ed87e19bffa4b2f272a8f4270de3cfb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true