Loading…

A parsimonious model for prediction of monsoon rainfall in India

Recently Gowariker et al. have used multiple and power regression involving 15 independent variables for long-range forecasting of monsoon rainfall in India. They have also argued that, when most of the independent variables are 'favourable', almost invariably the monsoon rainfall is norma...

Full description

Saved in:
Bibliographic Details
Published in:Current science (Bangalore) 1991-04, Vol.60 (7), p.446-448
Main Authors: Paranjpe, S. A., Gore, A. P.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 448
container_issue 7
container_start_page 446
container_title Current science (Bangalore)
container_volume 60
creator Paranjpe, S. A.
Gore, A. P.
description Recently Gowariker et al. have used multiple and power regression involving 15 independent variables for long-range forecasting of monsoon rainfall in India. They have also argued that, when most of the independent variables are 'favourable', almost invariably the monsoon rainfall is normal. In this note we formalize this approach using a parsimonious logistic regression model. The probability of a normal rainfall can be assessed in most cases using only five of the 15 variables. Of these, three are related to temperature and two to wind. This gives us correct results for 36 (out of 38) years, including the exceptional year 1957, when all but one independent variables were unfavourable and yet rainfall was normal.
format article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19833680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24093626</jstor_id><sourcerecordid>24093626</sourcerecordid><originalsourceid>FETCH-LOGICAL-j137t-e5a7323d98df1c17f63fcc8947b8161d4046d31538d430a308009a9eb71f06953</originalsourceid><addsrcrecordid>eNo9jLtqwzAUhjW00DTtIxS0dDSc42PL0tYQegkEsrRzOJEskLElI7lD376GlE7_7eO_ERsAxIq0wTtxX8oAUFMNZiNednLmXMKUYkjfRU7J9aP0Kcs59y7YJaQok1_7WNJqM4foeRxliPIQXeAHcbvm0j_-6VZ8vb1-7j-q4-n9sN8dqwGpW6q-5Y5qckY7jxY7r8hbq03TXTQqdA00yhG2pF1DwAQawLDpLx16UKalrXi-_s5cLI8-c7ShnOccJs4_ZzSaSGlYuacrN5Ql5f-9bsCQqhX9Ap7TTeE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A parsimonious model for prediction of monsoon rainfall in India</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Paranjpe, S. A. ; Gore, A. P.</creator><creatorcontrib>Paranjpe, S. A. ; Gore, A. P.</creatorcontrib><description>Recently Gowariker et al. have used multiple and power regression involving 15 independent variables for long-range forecasting of monsoon rainfall in India. They have also argued that, when most of the independent variables are 'favourable', almost invariably the monsoon rainfall is normal. In this note we formalize this approach using a parsimonious logistic regression model. The probability of a normal rainfall can be assessed in most cases using only five of the 15 variables. Of these, three are related to temperature and two to wind. This gives us correct results for 36 (out of 38) years, including the exceptional year 1957, when all but one independent variables were unfavourable and yet rainfall was normal.</description><identifier>ISSN: 0011-3891</identifier><identifier>CODEN: CUSCAM</identifier><language>eng</language><publisher>Bangalore: Current Science Association</publisher><subject>Drought ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Genetic research ; Logistic regression ; Meteorology ; Modeling ; Monsoons ; Northern hemisphere ; Parsimony ; Rain ; Regression analysis ; RESEARCH COMMUNICATIONS ; Weather analysis and prediction</subject><ispartof>Current science (Bangalore), 1991-04, Vol.60 (7), p.446-448</ispartof><rights>Indian Academy of Sciences</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24093626$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24093626$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19833680$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paranjpe, S. A.</creatorcontrib><creatorcontrib>Gore, A. P.</creatorcontrib><title>A parsimonious model for prediction of monsoon rainfall in India</title><title>Current science (Bangalore)</title><description>Recently Gowariker et al. have used multiple and power regression involving 15 independent variables for long-range forecasting of monsoon rainfall in India. They have also argued that, when most of the independent variables are 'favourable', almost invariably the monsoon rainfall is normal. In this note we formalize this approach using a parsimonious logistic regression model. The probability of a normal rainfall can be assessed in most cases using only five of the 15 variables. Of these, three are related to temperature and two to wind. This gives us correct results for 36 (out of 38) years, including the exceptional year 1957, when all but one independent variables were unfavourable and yet rainfall was normal.</description><subject>Drought</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Genetic research</subject><subject>Logistic regression</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Monsoons</subject><subject>Northern hemisphere</subject><subject>Parsimony</subject><subject>Rain</subject><subject>Regression analysis</subject><subject>RESEARCH COMMUNICATIONS</subject><subject>Weather analysis and prediction</subject><issn>0011-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9jLtqwzAUhjW00DTtIxS0dDSc42PL0tYQegkEsrRzOJEskLElI7lD376GlE7_7eO_ERsAxIq0wTtxX8oAUFMNZiNednLmXMKUYkjfRU7J9aP0Kcs59y7YJaQok1_7WNJqM4foeRxliPIQXeAHcbvm0j_-6VZ8vb1-7j-q4-n9sN8dqwGpW6q-5Y5qckY7jxY7r8hbq03TXTQqdA00yhG2pF1DwAQawLDpLx16UKalrXi-_s5cLI8-c7ShnOccJs4_ZzSaSGlYuacrN5Ql5f-9bsCQqhX9Ap7TTeE</recordid><startdate>19910410</startdate><enddate>19910410</enddate><creator>Paranjpe, S. A.</creator><creator>Gore, A. P.</creator><general>Current Science Association</general><general>Indian Academy of Sciences</general><scope>IQODW</scope></search><sort><creationdate>19910410</creationdate><title>A parsimonious model for prediction of monsoon rainfall in India</title><author>Paranjpe, S. A. ; Gore, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j137t-e5a7323d98df1c17f63fcc8947b8161d4046d31538d430a308009a9eb71f06953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Drought</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Genetic research</topic><topic>Logistic regression</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Monsoons</topic><topic>Northern hemisphere</topic><topic>Parsimony</topic><topic>Rain</topic><topic>Regression analysis</topic><topic>RESEARCH COMMUNICATIONS</topic><topic>Weather analysis and prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paranjpe, S. A.</creatorcontrib><creatorcontrib>Gore, A. P.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Current science (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paranjpe, S. A.</au><au>Gore, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parsimonious model for prediction of monsoon rainfall in India</atitle><jtitle>Current science (Bangalore)</jtitle><date>1991-04-10</date><risdate>1991</risdate><volume>60</volume><issue>7</issue><spage>446</spage><epage>448</epage><pages>446-448</pages><issn>0011-3891</issn><coden>CUSCAM</coden><abstract>Recently Gowariker et al. have used multiple and power regression involving 15 independent variables for long-range forecasting of monsoon rainfall in India. They have also argued that, when most of the independent variables are 'favourable', almost invariably the monsoon rainfall is normal. In this note we formalize this approach using a parsimonious logistic regression model. The probability of a normal rainfall can be assessed in most cases using only five of the 15 variables. Of these, three are related to temperature and two to wind. This gives us correct results for 36 (out of 38) years, including the exceptional year 1957, when all but one independent variables were unfavourable and yet rainfall was normal.</abstract><cop>Bangalore</cop><pub>Current Science Association</pub><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-3891
ispartof Current science (Bangalore), 1991-04, Vol.60 (7), p.446-448
issn 0011-3891
language eng
recordid cdi_pascalfrancis_primary_19833680
source JSTOR Archival Journals and Primary Sources Collection
subjects Drought
Earth, ocean, space
Exact sciences and technology
External geophysics
Genetic research
Logistic regression
Meteorology
Modeling
Monsoons
Northern hemisphere
Parsimony
Rain
Regression analysis
RESEARCH COMMUNICATIONS
Weather analysis and prediction
title A parsimonious model for prediction of monsoon rainfall in India
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parsimonious%20model%20for%20prediction%20of%20monsoon%20rainfall%20in%20India&rft.jtitle=Current%20science%20(Bangalore)&rft.au=Paranjpe,%20S.%20A.&rft.date=1991-04-10&rft.volume=60&rft.issue=7&rft.spage=446&rft.epage=448&rft.pages=446-448&rft.issn=0011-3891&rft.coden=CUSCAM&rft_id=info:doi/&rft_dat=%3Cjstor_pasca%3E24093626%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j137t-e5a7323d98df1c17f63fcc8947b8161d4046d31538d430a308009a9eb71f06953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24093626&rfr_iscdi=true