Loading…

Regularized Linear Prediction of Speech

All-pole spectral envelope estimates based on linear prediction (LP) for speech signals often exhibit unnaturally sharp peaks, especially for high-pitch speakers. In this paper, regularization is used to penalize rapid changes in the spectral envelope, which improves the spectral envelope estimate....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2008-01, Vol.16 (1), p.65-73
Main Authors: Ekman, L.A., Kleijn, W.B., Murthi, M.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3
cites cdi_FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3
container_end_page 73
container_issue 1
container_start_page 65
container_title IEEE transactions on audio, speech, and language processing
container_volume 16
creator Ekman, L.A.
Kleijn, W.B.
Murthi, M.N.
description All-pole spectral envelope estimates based on linear prediction (LP) for speech signals often exhibit unnaturally sharp peaks, especially for high-pitch speakers. In this paper, regularization is used to penalize rapid changes in the spectral envelope, which improves the spectral envelope estimate. Based on extensive experimental evidence, we conclude that regularized linear prediction outperforms bandwidth-expanded linear prediction. The regularization approach gives lower spectral distortion on average, and fewer outliers, while maintaining a very low computational complexity.
doi_str_mv 10.1109/TASL.2007.909448
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19954844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378273</ieee_id><sourcerecordid>36342215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKt3wUsQtKfU2e_doxS_IKDYel42m11NSZO62xz015uSUsGDpxmY5x1mniQ5RzBFCNTN4naeTzGAmCpQlMqDZIQYk5lQmB7ue8SPk5MYlwCUcIpGyeTVvXe1CdW3K9O8apwJ6UtwZWU3VdukrU_na-fsx2ly5E0d3dmujpO3-7vF7DHLnx-eZrd5ZokkmwwjX4IsiQVJEPiClQ4BBVYw8ICw4GB4ISm2YA0WDCnMrbMlWMoKb5Ql42Qy7F2H9rNzcaNXVbSurk3j2i5qKRhQxSjqyet_ScIJxRixHrz8Ay7bLjT9F1ohQYFzSXoIBsiGNsbgvF6HamXCl0agt4L1VrDeCtaD4D5ytdtrojW1D6axVfzNqf5MSWnPXQxc5ZzbjykREgtCfgC924D7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917406683</pqid></control><display><type>article</type><title>Regularized Linear Prediction of Speech</title><source>IEEE Xplore (Online service)</source><creator>Ekman, L.A. ; Kleijn, W.B. ; Murthi, M.N.</creator><creatorcontrib>Ekman, L.A. ; Kleijn, W.B. ; Murthi, M.N.</creatorcontrib><description>All-pole spectral envelope estimates based on linear prediction (LP) for speech signals often exhibit unnaturally sharp peaks, especially for high-pitch speakers. In this paper, regularization is used to penalize rapid changes in the spectral envelope, which improves the spectral envelope estimate. Based on extensive experimental evidence, we conclude that regularized linear prediction outperforms bandwidth-expanded linear prediction. The regularization approach gives lower spectral distortion on average, and fewer outliers, while maintaining a very low computational complexity.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2007.909448</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Autocorrelation ; Bandwidth ; Bandwidth expansion ; Computational complexity ; Contamination ; Distortion ; envelope estimation ; Envelopes ; Estimates ; Exact sciences and technology ; Frequency ; Information, signal and communications theory ; Linear prediction ; linear prediction (LP) ; Natural language processing ; Predictive models ; Regularization ; Research and development ; Sampling methods ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Speaker recognition ; Spectra ; Speech ; Speech coding ; Speech processing ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2008-01, Vol.16 (1), p.65-73</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3</citedby><cites>FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19954844$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekman, L.A.</creatorcontrib><creatorcontrib>Kleijn, W.B.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><title>Regularized Linear Prediction of Speech</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>All-pole spectral envelope estimates based on linear prediction (LP) for speech signals often exhibit unnaturally sharp peaks, especially for high-pitch speakers. In this paper, regularization is used to penalize rapid changes in the spectral envelope, which improves the spectral envelope estimate. Based on extensive experimental evidence, we conclude that regularized linear prediction outperforms bandwidth-expanded linear prediction. The regularization approach gives lower spectral distortion on average, and fewer outliers, while maintaining a very low computational complexity.</description><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Bandwidth</subject><subject>Bandwidth expansion</subject><subject>Computational complexity</subject><subject>Contamination</subject><subject>Distortion</subject><subject>envelope estimation</subject><subject>Envelopes</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Information, signal and communications theory</subject><subject>Linear prediction</subject><subject>linear prediction (LP)</subject><subject>Natural language processing</subject><subject>Predictive models</subject><subject>Regularization</subject><subject>Research and development</subject><subject>Sampling methods</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Speaker recognition</subject><subject>Spectra</subject><subject>Speech</subject><subject>Speech coding</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWKt3wUsQtKfU2e_doxS_IKDYel42m11NSZO62xz015uSUsGDpxmY5x1mniQ5RzBFCNTN4naeTzGAmCpQlMqDZIQYk5lQmB7ue8SPk5MYlwCUcIpGyeTVvXe1CdW3K9O8apwJ6UtwZWU3VdukrU_na-fsx2ly5E0d3dmujpO3-7vF7DHLnx-eZrd5ZokkmwwjX4IsiQVJEPiClQ4BBVYw8ICw4GB4ISm2YA0WDCnMrbMlWMoKb5Ql42Qy7F2H9rNzcaNXVbSurk3j2i5qKRhQxSjqyet_ScIJxRixHrz8Ay7bLjT9F1ohQYFzSXoIBsiGNsbgvF6HamXCl0agt4L1VrDeCtaD4D5ytdtrojW1D6axVfzNqf5MSWnPXQxc5ZzbjykREgtCfgC924D7</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Ekman, L.A.</creator><creator>Kleijn, W.B.</creator><creator>Murthi, M.N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200801</creationdate><title>Regularized Linear Prediction of Speech</title><author>Ekman, L.A. ; Kleijn, W.B. ; Murthi, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Bandwidth</topic><topic>Bandwidth expansion</topic><topic>Computational complexity</topic><topic>Contamination</topic><topic>Distortion</topic><topic>envelope estimation</topic><topic>Envelopes</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Information, signal and communications theory</topic><topic>Linear prediction</topic><topic>linear prediction (LP)</topic><topic>Natural language processing</topic><topic>Predictive models</topic><topic>Regularization</topic><topic>Research and development</topic><topic>Sampling methods</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Speaker recognition</topic><topic>Spectra</topic><topic>Speech</topic><topic>Speech coding</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekman, L.A.</creatorcontrib><creatorcontrib>Kleijn, W.B.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekman, L.A.</au><au>Kleijn, W.B.</au><au>Murthi, M.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Linear Prediction of Speech</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2008-01</date><risdate>2008</risdate><volume>16</volume><issue>1</issue><spage>65</spage><epage>73</epage><pages>65-73</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>All-pole spectral envelope estimates based on linear prediction (LP) for speech signals often exhibit unnaturally sharp peaks, especially for high-pitch speakers. In this paper, regularization is used to penalize rapid changes in the spectral envelope, which improves the spectral envelope estimate. Based on extensive experimental evidence, we conclude that regularized linear prediction outperforms bandwidth-expanded linear prediction. The regularization approach gives lower spectral distortion on average, and fewer outliers, while maintaining a very low computational complexity.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2007.909448</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2008-01, Vol.16 (1), p.65-73
issn 1558-7916
2329-9290
1558-7924
2329-9304
language eng
recordid cdi_pascalfrancis_primary_19954844
source IEEE Xplore (Online service)
subjects Applied sciences
Autocorrelation
Bandwidth
Bandwidth expansion
Computational complexity
Contamination
Distortion
envelope estimation
Envelopes
Estimates
Exact sciences and technology
Frequency
Information, signal and communications theory
Linear prediction
linear prediction (LP)
Natural language processing
Predictive models
Regularization
Research and development
Sampling methods
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Speaker recognition
Spectra
Speech
Speech coding
Speech processing
Telecommunications and information theory
title Regularized Linear Prediction of Speech
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Linear%20Prediction%20of%20Speech&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Ekman,%20L.A.&rft.date=2008-01&rft.volume=16&rft.issue=1&rft.spage=65&rft.epage=73&rft.pages=65-73&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2007.909448&rft_dat=%3Cproquest_pasca%3E36342215%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-21fd08d3c08310fb5de10405b50f012760a6b842c0ca2751926cecd0c45bfa9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917406683&rft_id=info:pmid/&rft_ieee_id=4378273&rfr_iscdi=true