Loading…
Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction
In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instea...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 741 |
container_issue | |
container_start_page | 732 |
container_title | |
container_volume | |
creator | Setiawan, Nurul Arif Seok-Ju, Hong Jang-Woon, Kim Chil-Woo, Lee |
description | In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow. |
doi_str_mv | 10.1007/11941354_76 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19992535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRCmd-ANeGBgC_kqcd0RVaSu1QqIwW05igyGNIzupyr8nVRlgupPuuRsOoRtK7ikh8oFSEJSnQsnsBE1A5oMnAqQEcopGNKM04VzA2b8sg3M0IpywBKTgl-gqxk9CCJPARuhlrvsYnW7w2u27Phi89pWpsWvwctsGvzMVXqw2eOprH_Cm1aXBdnCLfjt0Nq7-8L3pOoNn-y7osnO-uUYXVtfRTH51jN6eZq_TRbJ6ni-nj6ukZRS6RBLDhLCCWMpzXplKMKPLnGclcCtYwbjlJq9SkNYWIk1pCqYyWWEBJJUs5WN0e9xtdSx1bYNuShdVG9xWh29FAWCgDtzdkYtD1LyboArvv6KiRB1OVX9O5T8IKWNP</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee</creator><contributor>Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</contributor><creatorcontrib>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee ; Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</creatorcontrib><description>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540497769</identifier><identifier>ISBN: 3540497765</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540497790</identifier><identifier>EISBN: 354049779X</identifier><identifier>DOI: 10.1007/11941354_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; foreground segmentation ; Gaussian Mixture Model ; Improved HLS ; Software</subject><ispartof>Advances in Artificial Reality and Tele-Existence, 2006, p.732-741</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19992535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pan, Zhigeng</contributor><contributor>Liang, Ronghua</contributor><contributor>Lau, Rynson W. H.</contributor><contributor>Saito, Hideo</contributor><contributor>Haller, Michael</contributor><contributor>Cheok, Adrian</contributor><creatorcontrib>Setiawan, Nurul Arif</creatorcontrib><creatorcontrib>Seok-Ju, Hong</creatorcontrib><creatorcontrib>Jang-Woon, Kim</creatorcontrib><creatorcontrib>Chil-Woo, Lee</creatorcontrib><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><title>Advances in Artificial Reality and Tele-Existence</title><description>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>foreground segmentation</subject><subject>Gaussian Mixture Model</subject><subject>Improved HLS</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540497769</isbn><isbn>3540497765</isbn><isbn>9783540497790</isbn><isbn>354049779X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkD1PwzAYhM2XRCmd-ANeGBgC_kqcd0RVaSu1QqIwW05igyGNIzupyr8nVRlgupPuuRsOoRtK7ikh8oFSEJSnQsnsBE1A5oMnAqQEcopGNKM04VzA2b8sg3M0IpywBKTgl-gqxk9CCJPARuhlrvsYnW7w2u27Phi89pWpsWvwctsGvzMVXqw2eOprH_Cm1aXBdnCLfjt0Nq7-8L3pOoNn-y7osnO-uUYXVtfRTH51jN6eZq_TRbJ6ni-nj6ukZRS6RBLDhLCCWMpzXplKMKPLnGclcCtYwbjlJq9SkNYWIk1pCqYyWWEBJJUs5WN0e9xtdSx1bYNuShdVG9xWh29FAWCgDtzdkYtD1LyboArvv6KiRB1OVX9O5T8IKWNP</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Setiawan, Nurul Arif</creator><creator>Seok-Ju, Hong</creator><creator>Jang-Woon, Kim</creator><creator>Chil-Woo, Lee</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><author>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>foreground segmentation</topic><topic>Gaussian Mixture Model</topic><topic>Improved HLS</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Setiawan, Nurul Arif</creatorcontrib><creatorcontrib>Seok-Ju, Hong</creatorcontrib><creatorcontrib>Jang-Woon, Kim</creatorcontrib><creatorcontrib>Chil-Woo, Lee</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Setiawan, Nurul Arif</au><au>Seok-Ju, Hong</au><au>Jang-Woon, Kim</au><au>Chil-Woo, Lee</au><au>Pan, Zhigeng</au><au>Liang, Ronghua</au><au>Lau, Rynson W. H.</au><au>Saito, Hideo</au><au>Haller, Michael</au><au>Cheok, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</atitle><btitle>Advances in Artificial Reality and Tele-Existence</btitle><date>2006</date><risdate>2006</risdate><spage>732</spage><epage>741</epage><pages>732-741</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540497769</isbn><isbn>3540497765</isbn><eisbn>9783540497790</eisbn><eisbn>354049779X</eisbn><abstract>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11941354_76</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Artificial Reality and Tele-Existence, 2006, p.732-741 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19992535 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology foreground segmentation Gaussian Mixture Model Improved HLS Software |
title | Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20Mixture%20Model%20in%20Improved%20HLS%20Color%20Space%20for%20Human%20Silhouette%20Extraction&rft.btitle=Advances%20in%20Artificial%20Reality%20and%20Tele-Existence&rft.au=Setiawan,%20Nurul%20Arif&rft.date=2006&rft.spage=732&rft.epage=741&rft.pages=732-741&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540497769&rft.isbn_list=3540497765&rft_id=info:doi/10.1007/11941354_76&rft.eisbn=9783540497790&rft.eisbn_list=354049779X&rft_dat=%3Cpascalfrancis_sprin%3E19992535%3C/pascalfrancis_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |