Loading…

Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction

In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instea...

Full description

Saved in:
Bibliographic Details
Main Authors: Setiawan, Nurul Arif, Seok-Ju, Hong, Jang-Woon, Kim, Chil-Woo, Lee
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 741
container_issue
container_start_page 732
container_title
container_volume
creator Setiawan, Nurul Arif
Seok-Ju, Hong
Jang-Woon, Kim
Chil-Woo, Lee
description In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.
doi_str_mv 10.1007/11941354_76
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19992535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRCmd-ANeGBgC_kqcd0RVaSu1QqIwW05igyGNIzupyr8nVRlgupPuuRsOoRtK7ikh8oFSEJSnQsnsBE1A5oMnAqQEcopGNKM04VzA2b8sg3M0IpywBKTgl-gqxk9CCJPARuhlrvsYnW7w2u27Phi89pWpsWvwctsGvzMVXqw2eOprH_Cm1aXBdnCLfjt0Nq7-8L3pOoNn-y7osnO-uUYXVtfRTH51jN6eZq_TRbJ6ni-nj6ukZRS6RBLDhLCCWMpzXplKMKPLnGclcCtYwbjlJq9SkNYWIk1pCqYyWWEBJJUs5WN0e9xtdSx1bYNuShdVG9xWh29FAWCgDtzdkYtD1LyboArvv6KiRB1OVX9O5T8IKWNP</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee</creator><contributor>Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</contributor><creatorcontrib>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee ; Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</creatorcontrib><description>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540497769</identifier><identifier>ISBN: 3540497765</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540497790</identifier><identifier>EISBN: 354049779X</identifier><identifier>DOI: 10.1007/11941354_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; foreground segmentation ; Gaussian Mixture Model ; Improved HLS ; Software</subject><ispartof>Advances in Artificial Reality and Tele-Existence, 2006, p.732-741</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19992535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pan, Zhigeng</contributor><contributor>Liang, Ronghua</contributor><contributor>Lau, Rynson W. H.</contributor><contributor>Saito, Hideo</contributor><contributor>Haller, Michael</contributor><contributor>Cheok, Adrian</contributor><creatorcontrib>Setiawan, Nurul Arif</creatorcontrib><creatorcontrib>Seok-Ju, Hong</creatorcontrib><creatorcontrib>Jang-Woon, Kim</creatorcontrib><creatorcontrib>Chil-Woo, Lee</creatorcontrib><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><title>Advances in Artificial Reality and Tele-Existence</title><description>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>foreground segmentation</subject><subject>Gaussian Mixture Model</subject><subject>Improved HLS</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540497769</isbn><isbn>3540497765</isbn><isbn>9783540497790</isbn><isbn>354049779X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkD1PwzAYhM2XRCmd-ANeGBgC_kqcd0RVaSu1QqIwW05igyGNIzupyr8nVRlgupPuuRsOoRtK7ikh8oFSEJSnQsnsBE1A5oMnAqQEcopGNKM04VzA2b8sg3M0IpywBKTgl-gqxk9CCJPARuhlrvsYnW7w2u27Phi89pWpsWvwctsGvzMVXqw2eOprH_Cm1aXBdnCLfjt0Nq7-8L3pOoNn-y7osnO-uUYXVtfRTH51jN6eZq_TRbJ6ni-nj6ukZRS6RBLDhLCCWMpzXplKMKPLnGclcCtYwbjlJq9SkNYWIk1pCqYyWWEBJJUs5WN0e9xtdSx1bYNuShdVG9xWh29FAWCgDtzdkYtD1LyboArvv6KiRB1OVX9O5T8IKWNP</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Setiawan, Nurul Arif</creator><creator>Seok-Ju, Hong</creator><creator>Jang-Woon, Kim</creator><creator>Chil-Woo, Lee</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</title><author>Setiawan, Nurul Arif ; Seok-Ju, Hong ; Jang-Woon, Kim ; Chil-Woo, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>foreground segmentation</topic><topic>Gaussian Mixture Model</topic><topic>Improved HLS</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Setiawan, Nurul Arif</creatorcontrib><creatorcontrib>Seok-Ju, Hong</creatorcontrib><creatorcontrib>Jang-Woon, Kim</creatorcontrib><creatorcontrib>Chil-Woo, Lee</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Setiawan, Nurul Arif</au><au>Seok-Ju, Hong</au><au>Jang-Woon, Kim</au><au>Chil-Woo, Lee</au><au>Pan, Zhigeng</au><au>Liang, Ronghua</au><au>Lau, Rynson W. H.</au><au>Saito, Hideo</au><au>Haller, Michael</au><au>Cheok, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction</atitle><btitle>Advances in Artificial Reality and Tele-Existence</btitle><date>2006</date><risdate>2006</risdate><spage>732</spage><epage>741</epage><pages>732-741</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540497769</isbn><isbn>3540497765</isbn><eisbn>9783540497790</eisbn><eisbn>354049779X</eisbn><abstract>In this paper, we present an algorithm using Gaussian Mixture Model (GMM) for foreground segmentation which can differentiate shadow region from objects with simple criteria. In the algorithm, we have utilized the Improved HLS (IHLS) color space model as the fundamental description for image, instead of using raw RGB data. IHLS color space has an advantage over the standard RGB space to recognize shadow region from object by utilizing luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this feature in GMM, we obtain adaptive background model with good sensitivity to color changes and shadow.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11941354_76</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Artificial Reality and Tele-Existence, 2006, p.732-741
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19992535
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
foreground segmentation
Gaussian Mixture Model
Improved HLS
Software
title Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20Mixture%20Model%20in%20Improved%20HLS%20Color%20Space%20for%20Human%20Silhouette%20Extraction&rft.btitle=Advances%20in%20Artificial%20Reality%20and%20Tele-Existence&rft.au=Setiawan,%20Nurul%20Arif&rft.date=2006&rft.spage=732&rft.epage=741&rft.pages=732-741&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540497769&rft.isbn_list=3540497765&rft_id=info:doi/10.1007/11941354_76&rft.eisbn=9783540497790&rft.eisbn_list=354049779X&rft_dat=%3Cpascalfrancis_sprin%3E19992535%3C/pascalfrancis_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p219t-70e244f40f1383ded42eac836c93f42b23f3e8d597ffb455159ede6bf99717253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true