Loading…

Relationships of Nontypeable Haemophilus influenzae Strains to Hemolytic and Nonhemolytic Haemophilus haemolyticus Strains

Haemophilus influenzae is both a human respiratory pathogen and pharyngeal commensal, while H. haemolyticus, the closest phylogenetic relative of H. influenzae, is arguably a strict pharyngeal commensal. A hemolytic phenotype has historically differentiated H. haemolyticus from H. influenzae, but th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Clinical Microbiology 2008-02, Vol.46 (2), p.406-416
Main Authors: McCrea, Kirk W, Xie, Jingping, LaCross, Nathan, Patel, Mayurika, Mukundan, Deepa, Murphy, Timothy F, Marrs, Carl F, Gilsdorf, Janet R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Haemophilus influenzae is both a human respiratory pathogen and pharyngeal commensal, while H. haemolyticus, the closest phylogenetic relative of H. influenzae, is arguably a strict pharyngeal commensal. A hemolytic phenotype has historically differentiated H. haemolyticus from H. influenzae, but the recent recognition of significant nonhemolytic H. haemolyticus colonization has decreased this trait's resolvability. Given this and the potential of recombination between the species, we examined the distribution of microbiologic and molecular traits between collections of H. influenzae and H. haemolyticus strains separated within a dendrogram obtained by multilocus sequence analysis (MLSA). All strains hybridizing with a probe to iga, a gene encoding an immunoglobulin A protease of H. influenzae, clustered apart from strains that did not hybridize with the probe. Other traits also segregated significantly along this division, suggesting a separation of the species. Of note, the LOS genes licA, lic2A, and lgtC of H. influenzae were approximately 2, 6, and 54 times, respectively, more prevalent in H. influenzae than in H. haemolyticus. In contrast to species separation, interspecies recombination was evidenced by the inability of single gene sequences to phylogenetically separate the species and by the "fuzzy" distribution of some species-specific traits across the species dividing line. Together, these data support the historically accurate and pragmatic division of these species while recognizing their potential for recombination. Future comparative genomic studies identifying common and distinctive genes could be useful in evaluating their role in the commensal or virulent growth, respectively, of H. influenzae.
ISSN:0095-1137
1098-660X
1098-5530
DOI:10.1128/JCM.01832-07