Loading…

Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry

We consider an invariant quantum Hamiltonian H = − Δ LB + V in the L 2 space based on a Riemannian manifold M ̃ with a countable discrete symmetry group Γ . Typically, M ̃ is the universal covering space of a multiply connected Riemannian manifold M and Γ is the fundamental group of M . On the one h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2008-03, Vol.49 (3), p.033518-033518-16
Main Authors: KOCABOVA, P, STOVICEK, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3
cites cdi_FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3
container_end_page 033518-16
container_issue 3
container_start_page 033518
container_title Journal of mathematical physics
container_volume 49
creator KOCABOVA, P
STOVICEK, P
description We consider an invariant quantum Hamiltonian H = − Δ LB + V in the L 2 space based on a Riemannian manifold M ̃ with a countable discrete symmetry group Γ . Typically, M ̃ is the universal covering space of a multiply connected Riemannian manifold M and Γ is the fundamental group of M . On the one hand, following the basic step of the Bloch analysis, one decomposes the L 2 space over M ̃ into a direct integral of Hilbert spaces formed by equivariant functions on M ̃ . The Hamiltonian H decomposes correspondingly, with each component H Λ being defined by a quasiperiodic boundary condition. The quasiperiodic boundary conditions are in turn determined by irreducible unitary representations Λ of Γ . On the other hand, fixing a quasiperiodic boundary condition (i.e., a unitary representation Λ of Γ ) one can express the corresponding propagator in terms of the propagator associated with the Hamiltonian H . We discuss these procedures in detail and show that in a sense they are mutually inverse.
doi_str_mv 10.1063/1.2898484
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20277660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1456857801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3</originalsourceid><addsrcrecordid>eNqNkU9rlDEQh0NR6Nr20G8QLB4svDV_32QvQi21CgVB7KmHkCYTm_Jusk1Sy_bTN-su6kXxNHN45mF-MwgdUnJCycjf0ROm51posYNmlOj5oEapX6AZIYwNTGi9i17VekcIpVqIGbq-gATFTvEJPP4wZXeLbbLTqsbaG4-XJS_td9tyqTgn_DXCwqYUbcK9xpAnX_FjbH0K-1hdgQa4rhYLaGW1j14GO1U42NY9dPXx_NvZp-Hyy8Xns9PLwQkl2uBU4JZzJcdAidf6hggniQ_SSsUANDgIWgoqA2dguQpzFcbRSyG888Bv-B462nhzbdFUFxu4W5dTAtcMo7RnF7pTrzdUj3T_ALWZu_xQetbaGTlSzdgaeruBXMm1FghmWeLClpWhxKwPbKjZHrizb7ZCW52dQrHJxfprgBGm1DiSzr3fcOvNbIs5_V36xzfMz28Ym7rg-L8F_4J_5PIbNEsf-DPtlKw5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215618228</pqid></control><display><type>article</type><title>Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>KOCABOVA, P ; STOVICEK, P</creator><creatorcontrib>KOCABOVA, P ; STOVICEK, P</creatorcontrib><description>We consider an invariant quantum Hamiltonian H = − Δ LB + V in the L 2 space based on a Riemannian manifold M ̃ with a countable discrete symmetry group Γ . Typically, M ̃ is the universal covering space of a multiply connected Riemannian manifold M and Γ is the fundamental group of M . On the one hand, following the basic step of the Bloch analysis, one decomposes the L 2 space over M ̃ into a direct integral of Hilbert spaces formed by equivariant functions on M ̃ . The Hamiltonian H decomposes correspondingly, with each component H Λ being defined by a quasiperiodic boundary condition. The quasiperiodic boundary conditions are in turn determined by irreducible unitary representations Λ of Γ . On the other hand, fixing a quasiperiodic boundary condition (i.e., a unitary representation Λ of Γ ) one can express the corresponding propagator in terms of the propagator associated with the Hamiltonian H . We discuss these procedures in detail and show that in a sense they are mutually inverse.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2898484</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>BOUNDARY CONDITIONS ; BOUNDARY-VALUE PROBLEMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Combinatorics ; Exact sciences and technology ; FUNCTIONS ; Geometry ; HAMILTONIANS ; HILBERT SPACE ; INTEGRALS ; Mathematical methods in physics ; Mathematics ; Physics ; PROPAGATOR ; QUANTUM MECHANICS ; Quantum theory ; RIEMANN SPACE ; Sciences and techniques of general use ; SYMMETRY ; SYMMETRY GROUPS ; Topological manifolds</subject><ispartof>Journal of mathematical physics, 2008-03, Vol.49 (3), p.033518-033518-16</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Physics Mar 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3</citedby><cites>FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2898484$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20277660$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21100248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KOCABOVA, P</creatorcontrib><creatorcontrib>STOVICEK, P</creatorcontrib><title>Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry</title><title>Journal of mathematical physics</title><description>We consider an invariant quantum Hamiltonian H = − Δ LB + V in the L 2 space based on a Riemannian manifold M ̃ with a countable discrete symmetry group Γ . Typically, M ̃ is the universal covering space of a multiply connected Riemannian manifold M and Γ is the fundamental group of M . On the one hand, following the basic step of the Bloch analysis, one decomposes the L 2 space over M ̃ into a direct integral of Hilbert spaces formed by equivariant functions on M ̃ . The Hamiltonian H decomposes correspondingly, with each component H Λ being defined by a quasiperiodic boundary condition. The quasiperiodic boundary conditions are in turn determined by irreducible unitary representations Λ of Γ . On the other hand, fixing a quasiperiodic boundary condition (i.e., a unitary representation Λ of Γ ) one can express the corresponding propagator in terms of the propagator associated with the Hamiltonian H . We discuss these procedures in detail and show that in a sense they are mutually inverse.</description><subject>BOUNDARY CONDITIONS</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Combinatorics</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>Geometry</subject><subject>HAMILTONIANS</subject><subject>HILBERT SPACE</subject><subject>INTEGRALS</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>PROPAGATOR</subject><subject>QUANTUM MECHANICS</subject><subject>Quantum theory</subject><subject>RIEMANN SPACE</subject><subject>Sciences and techniques of general use</subject><subject>SYMMETRY</subject><subject>SYMMETRY GROUPS</subject><subject>Topological manifolds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkU9rlDEQh0NR6Nr20G8QLB4svDV_32QvQi21CgVB7KmHkCYTm_Jusk1Sy_bTN-su6kXxNHN45mF-MwgdUnJCycjf0ROm51posYNmlOj5oEapX6AZIYwNTGi9i17VekcIpVqIGbq-gATFTvEJPP4wZXeLbbLTqsbaG4-XJS_td9tyqTgn_DXCwqYUbcK9xpAnX_FjbH0K-1hdgQa4rhYLaGW1j14GO1U42NY9dPXx_NvZp-Hyy8Xns9PLwQkl2uBU4JZzJcdAidf6hggniQ_SSsUANDgIWgoqA2dguQpzFcbRSyG888Bv-B462nhzbdFUFxu4W5dTAtcMo7RnF7pTrzdUj3T_ALWZu_xQetbaGTlSzdgaeruBXMm1FghmWeLClpWhxKwPbKjZHrizb7ZCW52dQrHJxfprgBGm1DiSzr3fcOvNbIs5_V36xzfMz28Ym7rg-L8F_4J_5PIbNEsf-DPtlKw5</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>KOCABOVA, P</creator><creator>STOVICEK, P</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20080301</creationdate><title>Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry</title><author>KOCABOVA, P ; STOVICEK, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Combinatorics</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>Geometry</topic><topic>HAMILTONIANS</topic><topic>HILBERT SPACE</topic><topic>INTEGRALS</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>PROPAGATOR</topic><topic>QUANTUM MECHANICS</topic><topic>Quantum theory</topic><topic>RIEMANN SPACE</topic><topic>Sciences and techniques of general use</topic><topic>SYMMETRY</topic><topic>SYMMETRY GROUPS</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOCABOVA, P</creatorcontrib><creatorcontrib>STOVICEK, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOCABOVA, P</au><au>STOVICEK, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry</atitle><jtitle>Journal of mathematical physics</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>49</volume><issue>3</issue><spage>033518</spage><epage>033518-16</epage><pages>033518-033518-16</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider an invariant quantum Hamiltonian H = − Δ LB + V in the L 2 space based on a Riemannian manifold M ̃ with a countable discrete symmetry group Γ . Typically, M ̃ is the universal covering space of a multiply connected Riemannian manifold M and Γ is the fundamental group of M . On the one hand, following the basic step of the Bloch analysis, one decomposes the L 2 space over M ̃ into a direct integral of Hilbert spaces formed by equivariant functions on M ̃ . The Hamiltonian H decomposes correspondingly, with each component H Λ being defined by a quasiperiodic boundary condition. The quasiperiodic boundary conditions are in turn determined by irreducible unitary representations Λ of Γ . On the other hand, fixing a quasiperiodic boundary condition (i.e., a unitary representation Λ of Γ ) one can express the corresponding propagator in terms of the propagator associated with the Hamiltonian H . We discuss these procedures in detail and show that in a sense they are mutually inverse.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2898484</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2008-03, Vol.49 (3), p.033518-033518-16
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_20277660
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects BOUNDARY CONDITIONS
BOUNDARY-VALUE PROBLEMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Combinatorics
Exact sciences and technology
FUNCTIONS
Geometry
HAMILTONIANS
HILBERT SPACE
INTEGRALS
Mathematical methods in physics
Mathematics
Physics
PROPAGATOR
QUANTUM MECHANICS
Quantum theory
RIEMANN SPACE
Sciences and techniques of general use
SYMMETRY
SYMMETRY GROUPS
Topological manifolds
title Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Bloch%20analysis%20and%20propagators%20on%20Riemannian%20manifolds%20with%20a%20discrete%20symmetry&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=KOCABOVA,%20P&rft.date=2008-03-01&rft.volume=49&rft.issue=3&rft.spage=033518&rft.epage=033518-16&rft.pages=033518-033518-16&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2898484&rft_dat=%3Cproquest_pasca%3E1456857801%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c7f3a33756f10d88b04c50df5a572ee8ecef85415f32ea37f97f66d544dcde3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215618228&rft_id=info:pmid/&rfr_iscdi=true