Loading…
Practical Asynchronous Interconnect Network Design
The implementation of interconnect is becoming a significant challenge in modern integrated circuit (IC) design. Both synchronous and asynchronous strategies have been suggested to manage this problem. Creating a low skew clock tree for synchronous inter-block pipeline stages is a significant challe...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2008-05, Vol.16 (5), p.579-588 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The implementation of interconnect is becoming a significant challenge in modern integrated circuit (IC) design. Both synchronous and asynchronous strategies have been suggested to manage this problem. Creating a low skew clock tree for synchronous inter-block pipeline stages is a significant challenge. Asynchronous interconnect does not require a global clock, and therefore, it has a potential advantage in terms of design effort. This paper presents an asynchronous interconnect design that can be implemented using a standard application-specific IC flow. This design is considered across a range of IC interconnect scenarios. The results demonstrate that there is a region of the design space where the implementation provides an advantage over a synchronous interconnect by removing the need for clocked inter-block pipeline stages, while maintaining high throughput. Further results demonstrate a computer-aided design tool enhancement that would significantly increase this space. A detailed comparison of power, area, and latency of the two strategies is also provided for a range of IC scenarios. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2008.917545 |