Loading…

Multivariate Exponentially Weighted Moving Covariance Matrix

Multivariate exponentially weighted moving average (MEWMA) charts are among the best control charts for detecting small changes in any direction. The well-known MEWMA is directed at changes in the mean vector. But changes can occur in either the location or the variability of the correlated multivar...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics 2008-05, Vol.50 (2), p.155-166
Main Authors: Hawkins, Douglas M., Maboudou-Tchao, Edgard M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multivariate exponentially weighted moving average (MEWMA) charts are among the best control charts for detecting small changes in any direction. The well-known MEWMA is directed at changes in the mean vector. But changes can occur in either the location or the variability of the correlated multivariate quality characteristics, calling for parallel methodologies for detecting changes in the covariance matrix. This article discusses an exponentially weighted moving covariance matrix for monitoring the stability of the covariance matrix of a process. Used together with the location MEWMA, this chart provides a way to satisfy Shewhart's dictum that proper process control monitor both mean and variability. We show that the chart is competitive, generally outperforming current control charts for the covariance matrix.
ISSN:0040-1706
1537-2723
DOI:10.1198/004017008000000163