Loading…
Spectral Algorithms for Supervised Learning
We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. T...
Saved in:
Published in: | Neural computation 2008-07, Vol.20 (7), p.1873-1897 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563 |
container_end_page | 1897 |
container_issue | 7 |
container_start_page | 1873 |
container_title | Neural computation |
container_volume | 20 |
creator | Gerfo, L. Lo Rosasco, L. Odone, F. Vito, E. De Verri, A. |
description | We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems. |
doi_str_mv | 10.1162/neco.2008.05-07-517 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20427185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1484431581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhsxmHX1FwiyCDGHMJvq6u9jCBoDCx6i4K3p6e2JHebL7p2A_np72CWKxJzq8tRTb72EvKGwplTieR_8sEYAvQZRgaoEVc_IggoGldb623OyAG1MpaRUx-RlzncAICmIF-SYahRcGr0gZzdj8Lvk2tVFezukuPve5VUzpNXNNIZ0H3PYrjbBpT72t6_IUePaHF4f5pJ8_fjhy-WnavP56vryYlN5wemuMuAb6YFtjWSu5qGuHQe15dwLw6RiQiIYFxgaA1w1vGagvWgc9w03Wki2JKd775iGH1PIO9vF7EPbuj4MU7aKcUQqimpJ3j9JIiiUHFkB3_0D3g1T6ssXFilFCcLMNraHfBpyTqGxY4qdSz8tBTtXbufK7Vy5BWFB2VJ52Xp7UE91F7Z_dg4dF-DkALjsXdsk1_uYHzgEjopqUbirPdfFv-LNJ-8RorIMkAtWeKQljS0hfsXxP5HOHzE99cRvyTesvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211260597</pqid></control><display><type>article</type><title>Spectral Algorithms for Supervised Learning</title><source>MIT Press Journals</source><creator>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</creator><creatorcontrib>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</creatorcontrib><description>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2008.05-07-517</identifier><identifier>PMID: 18254698</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Databases as Topic ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Learning ; Learning and adaptive systems ; Least-Squares Analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Matrix ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Performance evaluation ; Problem solving ; Regression Analysis ; Sciences and techniques of general use ; Time Factors</subject><ispartof>Neural computation, 2008-07, Vol.20 (7), p.1873-1897</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright MIT Press Journals Jul 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</citedby><cites>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2008.05-07-517$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,53990,53991</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20427185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18254698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerfo, L. Lo</creatorcontrib><creatorcontrib>Rosasco, L.</creatorcontrib><creatorcontrib>Odone, F.</creatorcontrib><creatorcontrib>Vito, E. De</creatorcontrib><creatorcontrib>Verri, A.</creatorcontrib><title>Spectral Algorithms for Supervised Learning</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Databases as Topic</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Least-Squares Analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Matrix</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Performance evaluation</subject><subject>Problem solving</subject><subject>Regression Analysis</subject><subject>Sciences and techniques of general use</subject><subject>Time Factors</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhsxmHX1FwiyCDGHMJvq6u9jCBoDCx6i4K3p6e2JHebL7p2A_np72CWKxJzq8tRTb72EvKGwplTieR_8sEYAvQZRgaoEVc_IggoGldb623OyAG1MpaRUx-RlzncAICmIF-SYahRcGr0gZzdj8Lvk2tVFezukuPve5VUzpNXNNIZ0H3PYrjbBpT72t6_IUePaHF4f5pJ8_fjhy-WnavP56vryYlN5wemuMuAb6YFtjWSu5qGuHQe15dwLw6RiQiIYFxgaA1w1vGagvWgc9w03Wki2JKd775iGH1PIO9vF7EPbuj4MU7aKcUQqimpJ3j9JIiiUHFkB3_0D3g1T6ssXFilFCcLMNraHfBpyTqGxY4qdSz8tBTtXbufK7Vy5BWFB2VJ52Xp7UE91F7Z_dg4dF-DkALjsXdsk1_uYHzgEjopqUbirPdfFv-LNJ-8RorIMkAtWeKQljS0hfsXxP5HOHzE99cRvyTesvA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Gerfo, L. Lo</creator><creator>Rosasco, L.</creator><creator>Odone, F.</creator><creator>Vito, E. De</creator><creator>Verri, A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Spectral Algorithms for Supervised Learning</title><author>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Databases as Topic</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Least-Squares Analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Matrix</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Performance evaluation</topic><topic>Problem solving</topic><topic>Regression Analysis</topic><topic>Sciences and techniques of general use</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerfo, L. Lo</creatorcontrib><creatorcontrib>Rosasco, L.</creatorcontrib><creatorcontrib>Odone, F.</creatorcontrib><creatorcontrib>Vito, E. De</creatorcontrib><creatorcontrib>Verri, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerfo, L. Lo</au><au>Rosasco, L.</au><au>Odone, F.</au><au>Vito, E. De</au><au>Verri, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Algorithms for Supervised Learning</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>20</volume><issue>7</issue><spage>1873</spage><epage>1897</epage><pages>1873-1897</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>18254698</pmid><doi>10.1162/neco.2008.05-07-517</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2008-07, Vol.20 (7), p.1873-1897 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pascalfrancis_primary_20427185 |
source | MIT Press Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Biological and medical sciences Computer science control theory systems Databases as Topic Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects Learning Learning and adaptive systems Least-Squares Analysis Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Matrix Miscellaneous Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Performance evaluation Problem solving Regression Analysis Sciences and techniques of general use Time Factors |
title | Spectral Algorithms for Supervised Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Algorithms%20for%20Supervised%20Learning&rft.jtitle=Neural%20computation&rft.au=Gerfo,%20L.%20Lo&rft.date=2008-07-01&rft.volume=20&rft.issue=7&rft.spage=1873&rft.epage=1897&rft.pages=1873-1897&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2008.05-07-517&rft_dat=%3Cproquest_pasca%3E1484431581%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211260597&rft_id=info:pmid/18254698&rfr_iscdi=true |