Loading…

Spectral Algorithms for Supervised Learning

We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. T...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation 2008-07, Vol.20 (7), p.1873-1897
Main Authors: Gerfo, L. Lo, Rosasco, L., Odone, F., Vito, E. De, Verri, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563
cites cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563
container_end_page 1897
container_issue 7
container_start_page 1873
container_title Neural computation
container_volume 20
creator Gerfo, L. Lo
Rosasco, L.
Odone, F.
Vito, E. De
Verri, A.
description We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.
doi_str_mv 10.1162/neco.2008.05-07-517
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20427185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1484431581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhsxmHX1FwiyCDGHMJvq6u9jCBoDCx6i4K3p6e2JHebL7p2A_np72CWKxJzq8tRTb72EvKGwplTieR_8sEYAvQZRgaoEVc_IggoGldb623OyAG1MpaRUx-RlzncAICmIF-SYahRcGr0gZzdj8Lvk2tVFezukuPve5VUzpNXNNIZ0H3PYrjbBpT72t6_IUePaHF4f5pJ8_fjhy-WnavP56vryYlN5wemuMuAb6YFtjWSu5qGuHQe15dwLw6RiQiIYFxgaA1w1vGagvWgc9w03Wki2JKd775iGH1PIO9vF7EPbuj4MU7aKcUQqimpJ3j9JIiiUHFkB3_0D3g1T6ssXFilFCcLMNraHfBpyTqGxY4qdSz8tBTtXbufK7Vy5BWFB2VJ52Xp7UE91F7Z_dg4dF-DkALjsXdsk1_uYHzgEjopqUbirPdfFv-LNJ-8RorIMkAtWeKQljS0hfsXxP5HOHzE99cRvyTesvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211260597</pqid></control><display><type>article</type><title>Spectral Algorithms for Supervised Learning</title><source>MIT Press Journals</source><creator>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</creator><creatorcontrib>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</creatorcontrib><description>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2008.05-07-517</identifier><identifier>PMID: 18254698</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Databases as Topic ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Learning ; Learning and adaptive systems ; Least-Squares Analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Matrix ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Performance evaluation ; Problem solving ; Regression Analysis ; Sciences and techniques of general use ; Time Factors</subject><ispartof>Neural computation, 2008-07, Vol.20 (7), p.1873-1897</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright MIT Press Journals Jul 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</citedby><cites>FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2008.05-07-517$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,53990,53991</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20427185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18254698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerfo, L. Lo</creatorcontrib><creatorcontrib>Rosasco, L.</creatorcontrib><creatorcontrib>Odone, F.</creatorcontrib><creatorcontrib>Vito, E. De</creatorcontrib><creatorcontrib>Verri, A.</creatorcontrib><title>Spectral Algorithms for Supervised Learning</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Databases as Topic</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Least-Squares Analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Matrix</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Performance evaluation</subject><subject>Problem solving</subject><subject>Regression Analysis</subject><subject>Sciences and techniques of general use</subject><subject>Time Factors</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhsxmHX1FwiyCDGHMJvq6u9jCBoDCx6i4K3p6e2JHebL7p2A_np72CWKxJzq8tRTb72EvKGwplTieR_8sEYAvQZRgaoEVc_IggoGldb623OyAG1MpaRUx-RlzncAICmIF-SYahRcGr0gZzdj8Lvk2tVFezukuPve5VUzpNXNNIZ0H3PYrjbBpT72t6_IUePaHF4f5pJ8_fjhy-WnavP56vryYlN5wemuMuAb6YFtjWSu5qGuHQe15dwLw6RiQiIYFxgaA1w1vGagvWgc9w03Wki2JKd775iGH1PIO9vF7EPbuj4MU7aKcUQqimpJ3j9JIiiUHFkB3_0D3g1T6ssXFilFCcLMNraHfBpyTqGxY4qdSz8tBTtXbufK7Vy5BWFB2VJ52Xp7UE91F7Z_dg4dF-DkALjsXdsk1_uYHzgEjopqUbirPdfFv-LNJ-8RorIMkAtWeKQljS0hfsXxP5HOHzE99cRvyTesvA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Gerfo, L. Lo</creator><creator>Rosasco, L.</creator><creator>Odone, F.</creator><creator>Vito, E. De</creator><creator>Verri, A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Spectral Algorithms for Supervised Learning</title><author>Gerfo, L. Lo ; Rosasco, L. ; Odone, F. ; Vito, E. De ; Verri, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Databases as Topic</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Least-Squares Analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Matrix</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Performance evaluation</topic><topic>Problem solving</topic><topic>Regression Analysis</topic><topic>Sciences and techniques of general use</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerfo, L. Lo</creatorcontrib><creatorcontrib>Rosasco, L.</creatorcontrib><creatorcontrib>Odone, F.</creatorcontrib><creatorcontrib>Vito, E. De</creatorcontrib><creatorcontrib>Verri, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerfo, L. Lo</au><au>Rosasco, L.</au><au>Odone, F.</au><au>Vito, E. De</au><au>Verri, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Algorithms for Supervised Learning</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>20</volume><issue>7</issue><spage>1873</spage><epage>1897</epage><pages>1873-1897</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>18254698</pmid><doi>10.1162/neco.2008.05-07-517</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2008-07, Vol.20 (7), p.1873-1897
issn 0899-7667
1530-888X
language eng
recordid cdi_pascalfrancis_primary_20427185
source MIT Press Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Biological and medical sciences
Computer science
control theory
systems
Databases as Topic
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Learning
Learning and adaptive systems
Least-Squares Analysis
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Matrix
Miscellaneous
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Performance evaluation
Problem solving
Regression Analysis
Sciences and techniques of general use
Time Factors
title Spectral Algorithms for Supervised Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Algorithms%20for%20Supervised%20Learning&rft.jtitle=Neural%20computation&rft.au=Gerfo,%20L.%20Lo&rft.date=2008-07-01&rft.volume=20&rft.issue=7&rft.spage=1873&rft.epage=1897&rft.pages=1873-1897&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2008.05-07-517&rft_dat=%3Cproquest_pasca%3E1484431581%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-90cf6c03d963ab4ebba407d44c59367356209ae3299047f4b308c5fa4cf498563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211260597&rft_id=info:pmid/18254698&rfr_iscdi=true