Loading…
Investigations on the spin-glass state in Dy0.5Sr0.5MnO3 single crystals through structural, magnetic and thermal properties
Single crystals of Dy0.5Sr0.5MnO3 are grown using the optical floating zone technique, and their structural, magnetic, transport and thermal properties have been investigated. Magnetization measurements under field-cooled and zero-field-cooled conditions display irreversibility below 35 K. The magne...
Saved in:
Published in: | Journal of physics. Condensed matter 2008-07, Vol.20 (27), p.275234-275234 (10) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single crystals of Dy0.5Sr0.5MnO3 are grown using the optical floating zone technique, and their structural, magnetic, transport and thermal properties have been investigated. Magnetization measurements under field-cooled and zero-field-cooled conditions display irreversibility below 35 K. The magnetization does not saturate up to fields of 5 T in the temperature range 5-350 K. AC susceptibility shows a cusp around 32 K that shifts to higher temperature with increasing frequency. This frequency dependence of the peak temperature follows a critical slowing down with exponent znu = 3.6. Electrical resistivity shows insulating behavior, and the application of magnetic fields up to 10 T does not change this qualitative behavior. However, a marked negative magnetoresistance is observed in the paramagnetic phase reaching 80% at 70 K and 10 T. The observed resistivity behavior does not obey an activated type of conduction. These features are characteristic of spin-glass behavior in this half-doped insulating manganite. It is argued that the spin-glass-like state originates from the A-site disorder, which in turn results from the random distribution of cations with different ionic radii. Specific-heat measurements reveal a sizable linear contribution at low temperature that may be associated with the glassy magnetic ordering and a Schottky-like anomaly in a wide temperature range between 8 and 40 K. The distribution of Schottky levels is explained by the inhomogeneity of the molecular field in the spin-glass state that leads to variable splitting of the Kramers ground-state doublets in Dy3+. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/20/27/275234 |