Loading…
The Bayesian Lasso
The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...
Saved in:
Published in: | Journal of the American Statistical Association 2008-06, Vol.103 (482), p.681-686 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-227e89a8e6a8877e15d4393c7796b8a7f7fcf03ed6c1dfd73e7543b2e7f43b793 |
---|---|
cites | |
container_end_page | 686 |
container_issue | 482 |
container_start_page | 681 |
container_title | Journal of the American Statistical Association |
container_volume | 103 |
creator | Park, Trevor Casella, George |
description | The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant. |
doi_str_mv | 10.1198/016214508000000337 |
format | article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20528553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27640090</jstor_id><sourcerecordid>27640090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-227e89a8e6a8877e15d4393c7796b8a7f7fcf03ed6c1dfd73e7543b2e7f43b793</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsXj4JQFL2t5nMnOXjQ4hcUvFTwtqTZBLdsN5pskf73Zt2qoOhc3mF-83hvEDog-IwQJc8xySnhAkv8MYzBBhoQwSCjwJ820aADskSobbQT47yDQMoB2p8-29GVXtlY6WY00TH6XbTldB3t3lqH6PHmejq-yyYPt_fjy0lmBCZtRilYqbS0uZYSwBJRcqaYAVD5TGpw4IzDzJa5IaUrgVkQnM2oBZcEFBui0973JfjXpY1tsaiisXWtG-uXsWC5yjkhPIFHP8C5X4YmZStSO8mApsZDdPwnxBPBcc5ZomhPmeBjDNYVL6Fa6LAqCC66Txa_P5mOTtbWOhpdu6AbU8WvS4oFlUJ05oc9N4-tD997yDnGqot40e-rxvmw0G8-1GXR6lXtw6cp-yfHOy7tiro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472040643</pqid></control><display><type>article</type><title>The Bayesian Lasso</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Park, Trevor ; Casella, George</creator><creatorcontrib>Park, Trevor ; Casella, George</creatorcontrib><description>The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214508000000337</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Algorithms ; Analytical estimating ; Applications ; Bayes estimators ; Bayesian analysis ; Bayesian method ; Diabetes ; Empirical Bayes ; Estimation methods ; Exact sciences and technology ; General topics ; Gibbs sampler ; Hierarchical model ; Hierarchies ; Inverse Gaussian ; Least squares ; Linear inference, regression ; Linear models ; Linear regression ; Logic and foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Maximum likelihood estimation ; Musical intervals ; Normal distribution ; Parameter estimation ; Parameter modification ; Penalized regression ; Probability and statistics ; Recursion theory ; Regression ; Regression analysis ; Robustness (mathematics) ; Scale mixture of normals ; Sciences and techniques of general use ; Statistical analysis ; Statistical discrepancies ; Statistical median ; Statistical methods ; Statistics ; Structural hierarchy ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2008-06, Vol.103 (482), p.681-686</ispartof><rights>American Statistical Association 2008</rights><rights>Copyright 2008 American Statistical Association</rights><rights>2008 INIST-CNRS</rights><rights>American Statistical Association. 2008</rights><rights>Copyright American Statistical Association Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-227e89a8e6a8877e15d4393c7796b8a7f7fcf03ed6c1dfd73e7543b2e7f43b793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27640090$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27640090$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Trevor</creatorcontrib><creatorcontrib>Casella, George</creatorcontrib><title>The Bayesian Lasso</title><title>Journal of the American Statistical Association</title><description>The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.</description><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>Applications</subject><subject>Bayes estimators</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Diabetes</subject><subject>Empirical Bayes</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Gibbs sampler</subject><subject>Hierarchical model</subject><subject>Hierarchies</subject><subject>Inverse Gaussian</subject><subject>Least squares</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Logic and foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Musical intervals</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Penalized regression</subject><subject>Probability and statistics</subject><subject>Recursion theory</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Robustness (mathematics)</subject><subject>Scale mixture of normals</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical discrepancies</subject><subject>Statistical median</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Structural hierarchy</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kM1LAzEQxYMoWKsXj4JQFL2t5nMnOXjQ4hcUvFTwtqTZBLdsN5pskf73Zt2qoOhc3mF-83hvEDog-IwQJc8xySnhAkv8MYzBBhoQwSCjwJ820aADskSobbQT47yDQMoB2p8-29GVXtlY6WY00TH6XbTldB3t3lqH6PHmejq-yyYPt_fjy0lmBCZtRilYqbS0uZYSwBJRcqaYAVD5TGpw4IzDzJa5IaUrgVkQnM2oBZcEFBui0973JfjXpY1tsaiisXWtG-uXsWC5yjkhPIFHP8C5X4YmZStSO8mApsZDdPwnxBPBcc5ZomhPmeBjDNYVL6Fa6LAqCC66Txa_P5mOTtbWOhpdu6AbU8WvS4oFlUJ05oc9N4-tD997yDnGqot40e-rxvmw0G8-1GXR6lXtw6cp-yfHOy7tiro</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Park, Trevor</creator><creator>Casella, George</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20080601</creationdate><title>The Bayesian Lasso</title><author>Park, Trevor ; Casella, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-227e89a8e6a8877e15d4393c7796b8a7f7fcf03ed6c1dfd73e7543b2e7f43b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>Applications</topic><topic>Bayes estimators</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Diabetes</topic><topic>Empirical Bayes</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Gibbs sampler</topic><topic>Hierarchical model</topic><topic>Hierarchies</topic><topic>Inverse Gaussian</topic><topic>Least squares</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Logic and foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Musical intervals</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Penalized regression</topic><topic>Probability and statistics</topic><topic>Recursion theory</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Robustness (mathematics)</topic><topic>Scale mixture of normals</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical discrepancies</topic><topic>Statistical median</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Structural hierarchy</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Trevor</creatorcontrib><creatorcontrib>Casella, George</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Trevor</au><au>Casella, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bayesian Lasso</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>103</volume><issue>482</issue><spage>681</spage><epage>686</epage><pages>681-686</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/016214508000000337</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2008-06, Vol.103 (482), p.681-686 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_pascalfrancis_primary_20528553 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Algorithms Analytical estimating Applications Bayes estimators Bayesian analysis Bayesian method Diabetes Empirical Bayes Estimation methods Exact sciences and technology General topics Gibbs sampler Hierarchical model Hierarchies Inverse Gaussian Least squares Linear inference, regression Linear models Linear regression Logic and foundations Mathematical logic, foundations, set theory Mathematics Maximum likelihood estimation Musical intervals Normal distribution Parameter estimation Parameter modification Penalized regression Probability and statistics Recursion theory Regression Regression analysis Robustness (mathematics) Scale mixture of normals Sciences and techniques of general use Statistical analysis Statistical discrepancies Statistical median Statistical methods Statistics Structural hierarchy Theory and Methods |
title | The Bayesian Lasso |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bayesian%20Lasso&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Park,%20Trevor&rft.date=2008-06-01&rft.volume=103&rft.issue=482&rft.spage=681&rft.epage=686&rft.pages=681-686&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214508000000337&rft_dat=%3Cjstor_pasca%3E27640090%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-227e89a8e6a8877e15d4393c7796b8a7f7fcf03ed6c1dfd73e7543b2e7f43b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2472040643&rft_id=info:pmid/&rft_jstor_id=27640090&rfr_iscdi=true |