Loading…
A new fundamental equation for the band spectra of dielectric layer films
This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the tra...
Saved in:
Published in: | Journal of optics. A, Pure and applied optics Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3 |
container_end_page | 075205 (6) |
container_issue | 7 |
container_start_page | 075205 |
container_title | Journal of optics. A, Pure and applied optics |
container_volume | 10 |
creator | Szmulowicz, Frank |
description | This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals. |
doi_str_mv | 10.1088/1464-4258/10/7/075205 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20534657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34378680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gpCLnlybZJPNLp5K8aNQ8KLnkGYnGMl-NNki_ffuulVBip4yGZ6Zd3gQuqDkhpI8n1Ke8YQz0VdkKqdECkbEAZpQyWmSikwe9vUXc4xOYnwjhGSioBO0mOEa3rHd1KWuoO60x7De6M41NbZNwN0r4JWuSxxbMF3QuLG4dOCHjzPY6y0EbJ2v4hk6stpHON-9p-jl_u55_pgsnx4W89kyMWnBuoQVVKwyC0IbwwVjVmgmWUlXTBQZ1aTk_fEpKSmTwKEAnlIDhEmRci4KMOkpuhr3tqFZbyB2qnLRgPe6hmYTVcpTmWc56UExgiY0MQawqg2u0mGrKFGDODVIUYOUoSPVKK6fu9wF6Gi0t0HXxsXv4QHhmZA9d_trv3Hdp7nek_P_plyP065pfw7bh6q2tD1O9uB_JnwA5KaapQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34378680</pqid></control><display><type>article</type><title>A new fundamental equation for the band spectra of dielectric layer films</title><source>Institute of Physics</source><creator>Szmulowicz, Frank</creator><creatorcontrib>Szmulowicz, Frank</creatorcontrib><description>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</description><identifier>ISSN: 1464-4258</identifier><identifier>EISSN: 1741-3567</identifier><identifier>DOI: 10.1088/1464-4258/10/7/075205</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical materials ; Optics ; Photonic bandgap materials ; Physics</subject><ispartof>Journal of optics. A, Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205</ispartof><rights>2008 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</citedby><cites>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20534657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Szmulowicz, Frank</creatorcontrib><title>A new fundamental equation for the band spectra of dielectric layer films</title><title>Journal of optics. A, Pure and applied optics</title><description>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Physics</subject><issn>1464-4258</issn><issn>1741-3567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gpCLnlybZJPNLp5K8aNQ8KLnkGYnGMl-NNki_ffuulVBip4yGZ6Zd3gQuqDkhpI8n1Ke8YQz0VdkKqdECkbEAZpQyWmSikwe9vUXc4xOYnwjhGSioBO0mOEa3rHd1KWuoO60x7De6M41NbZNwN0r4JWuSxxbMF3QuLG4dOCHjzPY6y0EbJ2v4hk6stpHON-9p-jl_u55_pgsnx4W89kyMWnBuoQVVKwyC0IbwwVjVmgmWUlXTBQZ1aTk_fEpKSmTwKEAnlIDhEmRci4KMOkpuhr3tqFZbyB2qnLRgPe6hmYTVcpTmWc56UExgiY0MQawqg2u0mGrKFGDODVIUYOUoSPVKK6fu9wF6Gi0t0HXxsXv4QHhmZA9d_trv3Hdp7nek_P_plyP065pfw7bh6q2tD1O9uB_JnwA5KaapQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Szmulowicz, Frank</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>A new fundamental equation for the band spectra of dielectric layer films</title><author>Szmulowicz, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Szmulowicz, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of optics. A, Pure and applied optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szmulowicz, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new fundamental equation for the band spectra of dielectric layer films</atitle><jtitle>Journal of optics. A, Pure and applied optics</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>10</volume><issue>7</issue><spage>075205</spage><epage>075205 (6)</epage><pages>075205-075205 (6)</pages><artnum>075205</artnum><issn>1464-4258</issn><eissn>1741-3567</eissn><abstract>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1464-4258/10/7/075205</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4258 |
ispartof | Journal of optics. A, Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205 |
issn | 1464-4258 1741-3567 |
language | eng |
recordid | cdi_pascalfrancis_primary_20534657 |
source | Institute of Physics |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Optical materials Optics Photonic bandgap materials Physics |
title | A new fundamental equation for the band spectra of dielectric layer films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20fundamental%20equation%20for%20the%20band%20spectra%20of%20dielectric%20layer%20films&rft.jtitle=Journal%20of%20optics.%20A,%20Pure%20and%20applied%20optics&rft.au=Szmulowicz,%20Frank&rft.date=2008-07-01&rft.volume=10&rft.issue=7&rft.spage=075205&rft.epage=075205%20(6)&rft.pages=075205-075205%20(6)&rft.artnum=075205&rft.issn=1464-4258&rft.eissn=1741-3567&rft_id=info:doi/10.1088/1464-4258/10/7/075205&rft_dat=%3Cproquest_pasca%3E34378680%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34378680&rft_id=info:pmid/&rfr_iscdi=true |