Loading…

A new fundamental equation for the band spectra of dielectric layer films

This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the tra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optics. A, Pure and applied optics Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205
Main Author: Szmulowicz, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3
cites cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3
container_end_page 075205 (6)
container_issue 7
container_start_page 075205
container_title Journal of optics. A, Pure and applied optics
container_volume 10
creator Szmulowicz, Frank
description This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.
doi_str_mv 10.1088/1464-4258/10/7/075205
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20534657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34378680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gpCLnlybZJPNLp5K8aNQ8KLnkGYnGMl-NNki_ffuulVBip4yGZ6Zd3gQuqDkhpI8n1Ke8YQz0VdkKqdECkbEAZpQyWmSikwe9vUXc4xOYnwjhGSioBO0mOEa3rHd1KWuoO60x7De6M41NbZNwN0r4JWuSxxbMF3QuLG4dOCHjzPY6y0EbJ2v4hk6stpHON-9p-jl_u55_pgsnx4W89kyMWnBuoQVVKwyC0IbwwVjVmgmWUlXTBQZ1aTk_fEpKSmTwKEAnlIDhEmRci4KMOkpuhr3tqFZbyB2qnLRgPe6hmYTVcpTmWc56UExgiY0MQawqg2u0mGrKFGDODVIUYOUoSPVKK6fu9wF6Gi0t0HXxsXv4QHhmZA9d_trv3Hdp7nek_P_plyP065pfw7bh6q2tD1O9uB_JnwA5KaapQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34378680</pqid></control><display><type>article</type><title>A new fundamental equation for the band spectra of dielectric layer films</title><source>Institute of Physics</source><creator>Szmulowicz, Frank</creator><creatorcontrib>Szmulowicz, Frank</creatorcontrib><description>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</description><identifier>ISSN: 1464-4258</identifier><identifier>EISSN: 1741-3567</identifier><identifier>DOI: 10.1088/1464-4258/10/7/075205</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical materials ; Optics ; Photonic bandgap materials ; Physics</subject><ispartof>Journal of optics. A, Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205</ispartof><rights>2008 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</citedby><cites>FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20534657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Szmulowicz, Frank</creatorcontrib><title>A new fundamental equation for the band spectra of dielectric layer films</title><title>Journal of optics. A, Pure and applied optics</title><description>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Physics</subject><issn>1464-4258</issn><issn>1741-3567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gpCLnlybZJPNLp5K8aNQ8KLnkGYnGMl-NNki_ffuulVBip4yGZ6Zd3gQuqDkhpI8n1Ke8YQz0VdkKqdECkbEAZpQyWmSikwe9vUXc4xOYnwjhGSioBO0mOEa3rHd1KWuoO60x7De6M41NbZNwN0r4JWuSxxbMF3QuLG4dOCHjzPY6y0EbJ2v4hk6stpHON-9p-jl_u55_pgsnx4W89kyMWnBuoQVVKwyC0IbwwVjVmgmWUlXTBQZ1aTk_fEpKSmTwKEAnlIDhEmRci4KMOkpuhr3tqFZbyB2qnLRgPe6hmYTVcpTmWc56UExgiY0MQawqg2u0mGrKFGDODVIUYOUoSPVKK6fu9wF6Gi0t0HXxsXv4QHhmZA9d_trv3Hdp7nek_P_plyP065pfw7bh6q2tD1O9uB_JnwA5KaapQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Szmulowicz, Frank</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>A new fundamental equation for the band spectra of dielectric layer films</title><author>Szmulowicz, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Szmulowicz, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of optics. A, Pure and applied optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szmulowicz, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new fundamental equation for the band spectra of dielectric layer films</atitle><jtitle>Journal of optics. A, Pure and applied optics</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>10</volume><issue>7</issue><spage>075205</spage><epage>075205 (6)</epage><pages>075205-075205 (6)</pages><artnum>075205</artnum><issn>1464-4258</issn><eissn>1741-3567</eissn><abstract>This paper derives and demonstrates a new fundamental equation for the frequency spectra of one-dimensional photonic crystals. Commonly, the frequency spectra omega(q) as a function of Brillouin wavevector q for waves propagating through a one-dimensional photonic crystal are calculated from the trace of the transfer matrix. This paper develops a novel factored expression for band spectra calculations, tan2qd/2 = tan(kNaN-alphaN) X tan(kNaN-betaN), where N is the number of layers per period, d is the unit cell width and ki = niomega/c is the local wavevector in the ith layer of width 2ai and refractive index ni. Angles (alphaN,betaN) depend on the parameters of all N layers but are independent of aN; in particular, in the limit of two layers, (alpha2,beta2) correspond to the even/odd parity solutions at the center and the edge of the Brillouin zone. The derived spectral expression for the first time provides separate eigenvalue conditions for consecutive band edges at the center and the edge of the Brillouin zone for any N, which is especially useful in separating nearly-degenerate band edges. Besides being applicable everywhere the transfer matrix formalism is used, such as in finding the Bloch phase that is necessary in finite crystal calculations, the formalism is especially convenient for tailoring bandgaps and for calculating impurity modes in dielectric stacks. Overall, the present results provide an alternate analytic structure for discussing and designing one-dimensional photonic crystals.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1464-4258/10/7/075205</doi></addata></record>
fulltext fulltext
identifier ISSN: 1464-4258
ispartof Journal of optics. A, Pure and applied optics, 2008-07, Vol.10 (7), p.075205-075205 (6), Article 075205
issn 1464-4258
1741-3567
language eng
recordid cdi_pascalfrancis_primary_20534657
source Institute of Physics
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Optical materials
Optics
Photonic bandgap materials
Physics
title A new fundamental equation for the band spectra of dielectric layer films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20fundamental%20equation%20for%20the%20band%20spectra%20of%20dielectric%20layer%20films&rft.jtitle=Journal%20of%20optics.%20A,%20Pure%20and%20applied%20optics&rft.au=Szmulowicz,%20Frank&rft.date=2008-07-01&rft.volume=10&rft.issue=7&rft.spage=075205&rft.epage=075205%20(6)&rft.pages=075205-075205%20(6)&rft.artnum=075205&rft.issn=1464-4258&rft.eissn=1741-3567&rft_id=info:doi/10.1088/1464-4258/10/7/075205&rft_dat=%3Cproquest_pasca%3E34378680%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-2915b6fe5acc4522f5a272d1b25961a0d420530d127e4e9e431ce027534459ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34378680&rft_id=info:pmid/&rfr_iscdi=true