Loading…
Transformation of Polarization Descriptors Between Coordinate Frames
When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspon...
Saved in:
Published in: | Journal of electromagnetic waves and applications 1997-01, Vol.11 (9), p.1299-1313 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673 |
container_end_page | 1313 |
container_issue | 9 |
container_start_page | 1299 |
container_title | Journal of electromagnetic waves and applications |
container_volume | 11 |
creator | Michelson, D.G. Cumming, I.G. Livingstone, C.E. |
description | When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations
correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented
previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must
be known. Since conventional methods for determining these elements require
i
nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames. |
doi_str_mv | 10.1163/156939397X01179 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_2063357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnr3vwujbJZJNdb9paFQp6qOBtSbIJRLabMlko9de7ddWDIHMY5mWe-XgJuWT0mjEJM1bICoZQb5QxVR2RyUHJB0kdkwmtOM0LqtgpOUvpnVJaikJMyGKNuks-4kb3IXZZ9NlLbDWGj7FeuGQxbPuIKbtz_c65LpvHiE3odO-yJeqNS-fkxOs2uYvvPCWvy_v1_DFfPT88zW9XueUK-pwDl7wUQnDTlKVuGjVca2TpGsMFADjlPFNGUcO4pEArw5gpwfrKgRVSwZTMxrkWY0rofL3FsNG4rxmtDybUf0wYiKuR2OpkdeuHZ21IvxinEqA4DL4Z20L3ZcUuYtvUvd63EX8Y-G_HJ2GublQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><source>Taylor and Francis Science and Technology Collection</source><creator>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</creator><creatorcontrib>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</creatorcontrib><description>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations
correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented
previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must
be known. Since conventional methods for determining these elements require
i
nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</description><identifier>ISSN: 0920-5071</identifier><identifier>EISSN: 1569-3937</identifier><identifier>DOI: 10.1163/156939397X01179</identifier><language>eng</language><publisher>Zeist: Taylor & Francis Group</publisher><subject>Applied sciences ; Exact sciences and technology ; Propagation through the atmosphere ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory</subject><ispartof>Journal of electromagnetic waves and applications, 1997-01, Vol.11 (9), p.1299-1313</ispartof><rights>Copyright Taylor & Francis Group, LLC 1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2063357$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michelson, D.G.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Livingstone, C.E.</creatorcontrib><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><title>Journal of electromagnetic waves and applications</title><description>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations
correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented
previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must
be known. Since conventional methods for determining these elements require
i
nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Propagation through the atmosphere</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0920-5071</issn><issn>1569-3937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtnr3vwujbJZJNdb9paFQp6qOBtSbIJRLabMlko9de7ddWDIHMY5mWe-XgJuWT0mjEJM1bICoZQb5QxVR2RyUHJB0kdkwmtOM0LqtgpOUvpnVJaikJMyGKNuks-4kb3IXZZ9NlLbDWGj7FeuGQxbPuIKbtz_c65LpvHiE3odO-yJeqNS-fkxOs2uYvvPCWvy_v1_DFfPT88zW9XueUK-pwDl7wUQnDTlKVuGjVca2TpGsMFADjlPFNGUcO4pEArw5gpwfrKgRVSwZTMxrkWY0rofL3FsNG4rxmtDybUf0wYiKuR2OpkdeuHZ21IvxinEqA4DL4Z20L3ZcUuYtvUvd63EX8Y-G_HJ2GublQ</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Michelson, D.G.</creator><creator>Cumming, I.G.</creator><creator>Livingstone, C.E.</creator><general>Taylor & Francis Group</general><general>VSP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970101</creationdate><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><author>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Propagation through the atmosphere</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelson, D.G.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Livingstone, C.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of electromagnetic waves and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelson, D.G.</au><au>Cumming, I.G.</au><au>Livingstone, C.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of Polarization Descriptors Between Coordinate Frames</atitle><jtitle>Journal of electromagnetic waves and applications</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>11</volume><issue>9</issue><spage>1299</spage><epage>1313</epage><pages>1299-1313</pages><issn>0920-5071</issn><eissn>1569-3937</eissn><abstract>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations
correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented
previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must
be known. Since conventional methods for determining these elements require
i
nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</abstract><cop>Zeist</cop><pub>Taylor & Francis Group</pub><doi>10.1163/156939397X01179</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5071 |
ispartof | Journal of electromagnetic waves and applications, 1997-01, Vol.11 (9), p.1299-1313 |
issn | 0920-5071 1569-3937 |
language | eng |
recordid | cdi_pascalfrancis_primary_2063357 |
source | Taylor and Francis Science and Technology Collection |
subjects | Applied sciences Exact sciences and technology Propagation through the atmosphere Radiocommunications Radiowave propagation Telecommunications Telecommunications and information theory |
title | Transformation of Polarization Descriptors Between Coordinate Frames |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20Polarization%20Descriptors%20Between%20Coordinate%20Frames&rft.jtitle=Journal%20of%20electromagnetic%20waves%20and%20applications&rft.au=Michelson,%20D.G.&rft.date=1997-01-01&rft.volume=11&rft.issue=9&rft.spage=1299&rft.epage=1313&rft.pages=1299-1313&rft.issn=0920-5071&rft.eissn=1569-3937&rft_id=info:doi/10.1163/156939397X01179&rft_dat=%3Cpascalfrancis_cross%3E2063357%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |