Loading…

Transformation of Polarization Descriptors Between Coordinate Frames

When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspon...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electromagnetic waves and applications 1997-01, Vol.11 (9), p.1299-1313
Main Authors: Michelson, D.G., Cumming, I.G., Livingstone, C.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673
container_end_page 1313
container_issue 9
container_start_page 1299
container_title Journal of electromagnetic waves and applications
container_volume 11
creator Michelson, D.G.
Cumming, I.G.
Livingstone, C.E.
description When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must be known. Since conventional methods for determining these elements require i nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.
doi_str_mv 10.1163/156939397X01179
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_2063357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnr3vwujbJZJNdb9paFQp6qOBtSbIJRLabMlko9de7ddWDIHMY5mWe-XgJuWT0mjEJM1bICoZQb5QxVR2RyUHJB0kdkwmtOM0LqtgpOUvpnVJaikJMyGKNuks-4kb3IXZZ9NlLbDWGj7FeuGQxbPuIKbtz_c65LpvHiE3odO-yJeqNS-fkxOs2uYvvPCWvy_v1_DFfPT88zW9XueUK-pwDl7wUQnDTlKVuGjVca2TpGsMFADjlPFNGUcO4pEArw5gpwfrKgRVSwZTMxrkWY0rofL3FsNG4rxmtDybUf0wYiKuR2OpkdeuHZ21IvxinEqA4DL4Z20L3ZcUuYtvUvd63EX8Y-G_HJ2GublQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><source>Taylor and Francis Science and Technology Collection</source><creator>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</creator><creatorcontrib>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</creatorcontrib><description>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must be known. Since conventional methods for determining these elements require i nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</description><identifier>ISSN: 0920-5071</identifier><identifier>EISSN: 1569-3937</identifier><identifier>DOI: 10.1163/156939397X01179</identifier><language>eng</language><publisher>Zeist: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Exact sciences and technology ; Propagation through the atmosphere ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory</subject><ispartof>Journal of electromagnetic waves and applications, 1997-01, Vol.11 (9), p.1299-1313</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2063357$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michelson, D.G.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Livingstone, C.E.</creatorcontrib><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><title>Journal of electromagnetic waves and applications</title><description>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must be known. Since conventional methods for determining these elements require i nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Propagation through the atmosphere</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0920-5071</issn><issn>1569-3937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtnr3vwujbJZJNdb9paFQp6qOBtSbIJRLabMlko9de7ddWDIHMY5mWe-XgJuWT0mjEJM1bICoZQb5QxVR2RyUHJB0kdkwmtOM0LqtgpOUvpnVJaikJMyGKNuks-4kb3IXZZ9NlLbDWGj7FeuGQxbPuIKbtz_c65LpvHiE3odO-yJeqNS-fkxOs2uYvvPCWvy_v1_DFfPT88zW9XueUK-pwDl7wUQnDTlKVuGjVca2TpGsMFADjlPFNGUcO4pEArw5gpwfrKgRVSwZTMxrkWY0rofL3FsNG4rxmtDybUf0wYiKuR2OpkdeuHZ21IvxinEqA4DL4Z20L3ZcUuYtvUvd63EX8Y-G_HJ2GublQ</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Michelson, D.G.</creator><creator>Cumming, I.G.</creator><creator>Livingstone, C.E.</creator><general>Taylor &amp; Francis Group</general><general>VSP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970101</creationdate><title>Transformation of Polarization Descriptors Between Coordinate Frames</title><author>Michelson, D.G. ; Cumming, I.G. ; Livingstone, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Propagation through the atmosphere</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelson, D.G.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Livingstone, C.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of electromagnetic waves and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelson, D.G.</au><au>Cumming, I.G.</au><au>Livingstone, C.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of Polarization Descriptors Between Coordinate Frames</atitle><jtitle>Journal of electromagnetic waves and applications</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>11</volume><issue>9</issue><spage>1299</spage><epage>1313</epage><pages>1299-1313</pages><issn>0920-5071</issn><eissn>1569-3937</eissn><abstract>When accounting for polarization effects in radar and communications systems, it is often necessary to transform descriptions of the polarization state of an antenna or the polarization response of a target between local (or body-centered) and global coordinate frames. Such transformations correspond to rotation of the polarization basis by a prescribed angle which is a function of (1) the coordinate transformation matrix that relates the two coordinate frames and (2) the direction of propagation. Although methods for determining the polarization rotation angle have been presented previously in the literature, they can only be applied in special cases. Here we solve the problem in the general case using methods based on spherical trigonometry and vector algebra, respectively. In order to apply these techniques, the elements of the coordinate transformation matrix must be known. Since conventional methods for determining these elements require i nformation which may be difficult to obtain in practice, we present an alternative method which requires only a pair of directions that have been expressed in terms of both coordinate frames.</abstract><cop>Zeist</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1163/156939397X01179</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5071
ispartof Journal of electromagnetic waves and applications, 1997-01, Vol.11 (9), p.1299-1313
issn 0920-5071
1569-3937
language eng
recordid cdi_pascalfrancis_primary_2063357
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Exact sciences and technology
Propagation through the atmosphere
Radiocommunications
Radiowave propagation
Telecommunications
Telecommunications and information theory
title Transformation of Polarization Descriptors Between Coordinate Frames
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20Polarization%20Descriptors%20Between%20Coordinate%20Frames&rft.jtitle=Journal%20of%20electromagnetic%20waves%20and%20applications&rft.au=Michelson,%20D.G.&rft.date=1997-01-01&rft.volume=11&rft.issue=9&rft.spage=1299&rft.epage=1313&rft.pages=1299-1313&rft.issn=0920-5071&rft.eissn=1569-3937&rft_id=info:doi/10.1163/156939397X01179&rft_dat=%3Cpascalfrancis_cross%3E2063357%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-2326284442bd88add7397b68edb24333e7ef17b70b1260309b11b83cf9e3c4673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true