Loading…

Soliton transmission using periodic dispersion compensation

We examine the behavior of solitons in optical fibers where the dispersion is alternated between the normal and anomalous regimes. The periodic nature of the system strongly modifies the shape of the stable soliton (solitary wave) pulses, and increases their energy when compared with solitons in equ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 1997-10, Vol.15 (10), p.1808-1822
Main Authors: Smith, N.J., Doran, N.J., Forysiak, W., Knox, F.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examine the behavior of solitons in optical fibers where the dispersion is alternated between the normal and anomalous regimes. The periodic nature of the system strongly modifies the shape of the stable soliton (solitary wave) pulses, and increases their energy when compared with solitons in equivalent uniform fibers. Power enhancement factors of up to 70 are numerically observed. This leads to both an increased signal-to-noise ratio (SNR) at the receiver and reduced Gordon-Haus timing jitter. The interaction between pairs of isolated pulses is examined. We also examine implementations including periodic amplification, and show that the energy scalings introduced by the amplification and the dispersion management are independent provided that the periods of the two processes are dissimilar. We show that there is an optimum dispersion compensation ratio which minimizes the received Gordon-Haus jitter. A diagrammatic technique is presented for estimating the performance of dispersion compensated soliton transmission systems.
ISSN:0733-8724
1558-2213
DOI:10.1109/50.633558