Loading…

H ∞ synchronization of time-delayed chaotic systems

This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response sys...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2008-10, Vol.204 (1), p.170-177
Main Authors: Park, Ju H., Ji, D.H., Won, S.C., Lee, S.M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 177
container_issue 1
container_start_page 170
container_title Applied mathematics and computation
container_volume 204
creator Park, Ju H.
Ji, D.H.
Won, S.C.
Lee, S.M.
description This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an H ∞ norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.
doi_str_mv 10.1016/j.amc.2008.06.012
format article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20768011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630030800489X</els_id><sourcerecordid>S009630030800489X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673</originalsourceid><addsrcrecordid>eNotkMFKw0AQhhdRsFYfwFsuHhNndpPdBE9StBUKXvS8rJNZuqVJSjYI9Ql8Ch_OJ3FLPQ38fPz88wlxi1AgoL7fFq6jQgLUBegCUJ6JGdZG5ZUum3MxA2h0rgDUpbiKcQsARmM5E9Uq-_3-yeKhp8049OHLTWHos8FnU-g4b3nnDtxmtHHDFChxceIuXosL73aRb_7vXLw_P70tVvn6dfmyeFznjJWcct2oqmVflxKbkryqiD23YBoN4ElrBIkVSokpR9JgZIkNk_Gm4Q_URs3F3al37yK5nR9dTyHa_Rg6Nx6sTE_UgJi4hxPHacxn4NFGCtwTt2Fkmmw7BItgj6bs1iZT9mjKgrbJlPoDVxRdGw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>H ∞ synchronization of time-delayed chaotic systems</title><source>Elsevier SD Backfile Mathematics</source><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><creator>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</creator><creatorcontrib>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</creatorcontrib><description>This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an H ∞ norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2008.06.012</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>[formula omitted] synchronization ; Algebra ; Dynamic feedback ; Exact sciences and technology ; Linear and multilinear algebra, matrix theory ; LMI ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use ; Time-delayed chaotic systems</subject><ispartof>Applied mathematics and computation, 2008-10, Vol.204 (1), p.170-177</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630030800489X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768011$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Won, S.C.</creatorcontrib><creatorcontrib>Lee, S.M.</creatorcontrib><title>H ∞ synchronization of time-delayed chaotic systems</title><title>Applied mathematics and computation</title><description>This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an H ∞ norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</description><subject>[formula omitted] synchronization</subject><subject>Algebra</subject><subject>Dynamic feedback</subject><subject>Exact sciences and technology</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>LMI</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Time-delayed chaotic systems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotkMFKw0AQhhdRsFYfwFsuHhNndpPdBE9StBUKXvS8rJNZuqVJSjYI9Ql8Ch_OJ3FLPQ38fPz88wlxi1AgoL7fFq6jQgLUBegCUJ6JGdZG5ZUum3MxA2h0rgDUpbiKcQsARmM5E9Uq-_3-yeKhp8049OHLTWHos8FnU-g4b3nnDtxmtHHDFChxceIuXosL73aRb_7vXLw_P70tVvn6dfmyeFznjJWcct2oqmVflxKbkryqiD23YBoN4ElrBIkVSokpR9JgZIkNk_Gm4Q_URs3F3al37yK5nR9dTyHa_Rg6Nx6sTE_UgJi4hxPHacxn4NFGCtwTt2Fkmmw7BItgj6bs1iZT9mjKgrbJlPoDVxRdGw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Park, Ju H.</creator><creator>Ji, D.H.</creator><creator>Won, S.C.</creator><creator>Lee, S.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20081001</creationdate><title>H ∞ synchronization of time-delayed chaotic systems</title><author>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>[formula omitted] synchronization</topic><topic>Algebra</topic><topic>Dynamic feedback</topic><topic>Exact sciences and technology</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>LMI</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Time-delayed chaotic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Won, S.C.</creatorcontrib><creatorcontrib>Lee, S.M.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ju H.</au><au>Ji, D.H.</au><au>Won, S.C.</au><au>Lee, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H ∞ synchronization of time-delayed chaotic systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>204</volume><issue>1</issue><spage>170</spage><epage>177</epage><pages>170-177</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an H ∞ norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2008.06.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2008-10, Vol.204 (1), p.170-177
issn 0096-3003
1873-5649
language eng
recordid cdi_pascalfrancis_primary_20768011
source Elsevier SD Backfile Mathematics; ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS]
subjects [formula omitted] synchronization
Algebra
Dynamic feedback
Exact sciences and technology
Linear and multilinear algebra, matrix theory
LMI
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Time-delayed chaotic systems
title H ∞ synchronization of time-delayed chaotic systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%20%E2%88%9E%20synchronization%20of%20time-delayed%20chaotic%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Park,%20Ju%20H.&rft.date=2008-10-01&rft.volume=204&rft.issue=1&rft.spage=170&rft.epage=177&rft.pages=170-177&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2008.06.012&rft_dat=%3Celsevier_pasca%3ES009630030800489X%3C/elsevier_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true