Loading…
H ∞ synchronization of time-delayed chaotic systems
This paper considers H ∞ synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response sys...
Saved in:
Published in: | Applied mathematics and computation 2008-10, Vol.204 (1), p.170-177 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 177 |
container_issue | 1 |
container_start_page | 170 |
container_title | Applied mathematics and computation |
container_volume | 204 |
creator | Park, Ju H. Ji, D.H. Won, S.C. Lee, S.M. |
description | This paper considers
H
∞
synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an
H
∞
norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme. |
doi_str_mv | 10.1016/j.amc.2008.06.012 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20768011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630030800489X</els_id><sourcerecordid>S009630030800489X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673</originalsourceid><addsrcrecordid>eNotkMFKw0AQhhdRsFYfwFsuHhNndpPdBE9StBUKXvS8rJNZuqVJSjYI9Ql8Ch_OJ3FLPQ38fPz88wlxi1AgoL7fFq6jQgLUBegCUJ6JGdZG5ZUum3MxA2h0rgDUpbiKcQsARmM5E9Uq-_3-yeKhp8049OHLTWHos8FnU-g4b3nnDtxmtHHDFChxceIuXosL73aRb_7vXLw_P70tVvn6dfmyeFznjJWcct2oqmVflxKbkryqiD23YBoN4ElrBIkVSokpR9JgZIkNk_Gm4Q_URs3F3al37yK5nR9dTyHa_Rg6Nx6sTE_UgJi4hxPHacxn4NFGCtwTt2Fkmmw7BItgj6bs1iZT9mjKgrbJlPoDVxRdGw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>H ∞ synchronization of time-delayed chaotic systems</title><source>Elsevier SD Backfile Mathematics</source><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><creator>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</creator><creatorcontrib>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</creatorcontrib><description>This paper considers
H
∞
synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an
H
∞
norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2008.06.012</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>[formula omitted] synchronization ; Algebra ; Dynamic feedback ; Exact sciences and technology ; Linear and multilinear algebra, matrix theory ; LMI ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use ; Time-delayed chaotic systems</subject><ispartof>Applied mathematics and computation, 2008-10, Vol.204 (1), p.170-177</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630030800489X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768011$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Won, S.C.</creatorcontrib><creatorcontrib>Lee, S.M.</creatorcontrib><title>H ∞ synchronization of time-delayed chaotic systems</title><title>Applied mathematics and computation</title><description>This paper considers
H
∞
synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an
H
∞
norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</description><subject>[formula omitted] synchronization</subject><subject>Algebra</subject><subject>Dynamic feedback</subject><subject>Exact sciences and technology</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>LMI</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Time-delayed chaotic systems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotkMFKw0AQhhdRsFYfwFsuHhNndpPdBE9StBUKXvS8rJNZuqVJSjYI9Ql8Ch_OJ3FLPQ38fPz88wlxi1AgoL7fFq6jQgLUBegCUJ6JGdZG5ZUum3MxA2h0rgDUpbiKcQsARmM5E9Uq-_3-yeKhp8049OHLTWHos8FnU-g4b3nnDtxmtHHDFChxceIuXosL73aRb_7vXLw_P70tVvn6dfmyeFznjJWcct2oqmVflxKbkryqiD23YBoN4ElrBIkVSokpR9JgZIkNk_Gm4Q_URs3F3al37yK5nR9dTyHa_Rg6Nx6sTE_UgJi4hxPHacxn4NFGCtwTt2Fkmmw7BItgj6bs1iZT9mjKgrbJlPoDVxRdGw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Park, Ju H.</creator><creator>Ji, D.H.</creator><creator>Won, S.C.</creator><creator>Lee, S.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20081001</creationdate><title>H ∞ synchronization of time-delayed chaotic systems</title><author>Park, Ju H. ; Ji, D.H. ; Won, S.C. ; Lee, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>[formula omitted] synchronization</topic><topic>Algebra</topic><topic>Dynamic feedback</topic><topic>Exact sciences and technology</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>LMI</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Time-delayed chaotic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Won, S.C.</creatorcontrib><creatorcontrib>Lee, S.M.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ju H.</au><au>Ji, D.H.</au><au>Won, S.C.</au><au>Lee, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H ∞ synchronization of time-delayed chaotic systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>204</volume><issue>1</issue><spage>170</spage><epage>177</epage><pages>170-177</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>This paper considers
H
∞
synchronization of a class of time-delayed chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the dynamic feedback controller is established to not only guarantee synchronization between derive and response systems, but also reduce the effect of external disturbance to an
H
∞
norm constraint. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2008.06.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2008-10, Vol.204 (1), p.170-177 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_pascalfrancis_primary_20768011 |
source | Elsevier SD Backfile Mathematics; ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS] |
subjects | [formula omitted] synchronization Algebra Dynamic feedback Exact sciences and technology Linear and multilinear algebra, matrix theory LMI Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Time-delayed chaotic systems |
title | H ∞ synchronization of time-delayed chaotic systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%20%E2%88%9E%20synchronization%20of%20time-delayed%20chaotic%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Park,%20Ju%20H.&rft.date=2008-10-01&rft.volume=204&rft.issue=1&rft.spage=170&rft.epage=177&rft.pages=170-177&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2008.06.012&rft_dat=%3Celsevier_pasca%3ES009630030800489X%3C/elsevier_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e152t-6935def842194cf35cefed079600fc66102151221cef1c6072419ec7f79eb1673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |