Loading…
Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update
In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for...
Saved in:
Published in: | IEEE transactions on image processing 2008-11, Vol.17 (11), p.2227-2235 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3 |
container_end_page | 2235 |
container_issue | 11 |
container_start_page | 2227 |
container_title | IEEE transactions on image processing |
container_volume | 17 |
creator | Wei, Shou-Der Lai, Shang-Hong |
description | In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions. |
doi_str_mv | 10.1109/TIP.2008.2004615 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20768399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648483</ieee_id><sourcerecordid>2329055111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</originalsourceid><addsrcrecordid>eNp9kctrFTEYxYMotl7dC4IMgrqamvdj2V6sFupjcYvLkMn9xqZkHiYzhfrXN8MdKnThJsnH-Z0TkoPQa4JPCMHm0-7i5wnFWC8Ll0Q8QcfEcFKXiT4tZyxUrQg3R-hFzjcYEy6IfI6OiDaKSomPkT93eap20I3RTVB9c5O_Dv3v6sxl2FdDX30fUudi-FumbRpyrrZDSlDgUMRfYbquTvdunMJtMc9xChFuIRah7yFVV-O-pL5Ez1oXM7xa9w26Ov-8236tL398udieXtaeCzbVugFHBeOUNFxqKr0muuUtU41jUnnCFRivjGik0MoRShtOleCYaKwl-IZt0MdD7piGPzPkyXYhe4jR9TDM2WqNJZeCyUJ--C8pjWKYYFbAd4_Am2FOfXmF1ZIxilXJ2yB8gPzyQQlaO6bQuXRnCbZLT7b0ZJee7NpTsbxdc-emg_0_w1pMAd6vgMvexTa53of8wC0Xa2ZM4d4cuAAADzKXXHPN2D22B6F2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863320765</pqid></control><display><type>article</type><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wei, Shou-Der ; Lai, Shang-Hong</creator><creatorcontrib>Wei, Shou-Der ; Lai, Shang-Hong</creatorcontrib><description>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2008.2004615</identifier><identifier>PMID: 18972660</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Cross correlation ; Distortion measurement ; Exact sciences and technology ; Fast algorithms ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image matching ; Image processing ; Information, signal and communications theory ; Matching ; Mathematical analysis ; Motion estimation ; Multilevel ; multilevel successive elimination ; normalized cross correlation ; Object detection ; Partitioning algorithms ; Partitions ; Pattern matching ; Pattern recognition ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal processing ; Subtraction Technique ; Telecommunications and information theory ; Upper bound ; Upper bounds ; Video compression ; winner update strategy</subject><ispartof>IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2227-2235</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</citedby><cites>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768399$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18972660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Shou-Der</creatorcontrib><creatorcontrib>Lai, Shang-Hong</creatorcontrib><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cross correlation</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Fast algorithms</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image matching</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Motion estimation</subject><subject>Multilevel</subject><subject>multilevel successive elimination</subject><subject>normalized cross correlation</subject><subject>Object detection</subject><subject>Partitioning algorithms</subject><subject>Partitions</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>Video compression</subject><subject>winner update strategy</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kctrFTEYxYMotl7dC4IMgrqamvdj2V6sFupjcYvLkMn9xqZkHiYzhfrXN8MdKnThJsnH-Z0TkoPQa4JPCMHm0-7i5wnFWC8Ll0Q8QcfEcFKXiT4tZyxUrQg3R-hFzjcYEy6IfI6OiDaKSomPkT93eap20I3RTVB9c5O_Dv3v6sxl2FdDX30fUudi-FumbRpyrrZDSlDgUMRfYbquTvdunMJtMc9xChFuIRah7yFVV-O-pL5Ez1oXM7xa9w26Ov-8236tL398udieXtaeCzbVugFHBeOUNFxqKr0muuUtU41jUnnCFRivjGik0MoRShtOleCYaKwl-IZt0MdD7piGPzPkyXYhe4jR9TDM2WqNJZeCyUJ--C8pjWKYYFbAd4_Am2FOfXmF1ZIxilXJ2yB8gPzyQQlaO6bQuXRnCbZLT7b0ZJee7NpTsbxdc-emg_0_w1pMAd6vgMvexTa53of8wC0Xa2ZM4d4cuAAADzKXXHPN2D22B6F2</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Wei, Shou-Der</creator><creator>Lai, Shang-Hong</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><author>Wei, Shou-Der ; Lai, Shang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cross correlation</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Fast algorithms</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image matching</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Motion estimation</topic><topic>Multilevel</topic><topic>multilevel successive elimination</topic><topic>normalized cross correlation</topic><topic>Object detection</topic><topic>Partitioning algorithms</topic><topic>Partitions</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>Video compression</topic><topic>winner update strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Shou-Der</creatorcontrib><creatorcontrib>Lai, Shang-Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Shou-Der</au><au>Lai, Shang-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>17</volume><issue>11</issue><spage>2227</spage><epage>2235</epage><pages>2227-2235</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18972660</pmid><doi>10.1109/TIP.2008.2004615</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2227-2235 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_20768399 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Cross correlation Distortion measurement Exact sciences and technology Fast algorithms Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image matching Image processing Information, signal and communications theory Matching Mathematical analysis Motion estimation Multilevel multilevel successive elimination normalized cross correlation Object detection Partitioning algorithms Partitions Pattern matching Pattern recognition Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Signal processing Subtraction Technique Telecommunications and information theory Upper bound Upper bounds Video compression winner update strategy |
title | Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Template%20Matching%20Based%20on%20Normalized%20Cross%20Correlation%20With%20Adaptive%20Multilevel%20Winner%20Update&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wei,%20Shou-Der&rft.date=2008-11-01&rft.volume=17&rft.issue=11&rft.spage=2227&rft.epage=2235&rft.pages=2227-2235&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2008.2004615&rft_dat=%3Cproquest_pasca%3E2329055111%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863320765&rft_id=info:pmid/18972660&rft_ieee_id=4648483&rfr_iscdi=true |