Loading…

Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update

In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2008-11, Vol.17 (11), p.2227-2235
Main Authors: Wei, Shou-Der, Lai, Shang-Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3
cites cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3
container_end_page 2235
container_issue 11
container_start_page 2227
container_title IEEE transactions on image processing
container_volume 17
creator Wei, Shou-Der
Lai, Shang-Hong
description In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.
doi_str_mv 10.1109/TIP.2008.2004615
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20768399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648483</ieee_id><sourcerecordid>2329055111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</originalsourceid><addsrcrecordid>eNp9kctrFTEYxYMotl7dC4IMgrqamvdj2V6sFupjcYvLkMn9xqZkHiYzhfrXN8MdKnThJsnH-Z0TkoPQa4JPCMHm0-7i5wnFWC8Ll0Q8QcfEcFKXiT4tZyxUrQg3R-hFzjcYEy6IfI6OiDaKSomPkT93eap20I3RTVB9c5O_Dv3v6sxl2FdDX30fUudi-FumbRpyrrZDSlDgUMRfYbquTvdunMJtMc9xChFuIRah7yFVV-O-pL5Ez1oXM7xa9w26Ov-8236tL398udieXtaeCzbVugFHBeOUNFxqKr0muuUtU41jUnnCFRivjGik0MoRShtOleCYaKwl-IZt0MdD7piGPzPkyXYhe4jR9TDM2WqNJZeCyUJ--C8pjWKYYFbAd4_Am2FOfXmF1ZIxilXJ2yB8gPzyQQlaO6bQuXRnCbZLT7b0ZJee7NpTsbxdc-emg_0_w1pMAd6vgMvexTa53of8wC0Xa2ZM4d4cuAAADzKXXHPN2D22B6F2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863320765</pqid></control><display><type>article</type><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wei, Shou-Der ; Lai, Shang-Hong</creator><creatorcontrib>Wei, Shou-Der ; Lai, Shang-Hong</creatorcontrib><description>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2008.2004615</identifier><identifier>PMID: 18972660</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Cross correlation ; Distortion measurement ; Exact sciences and technology ; Fast algorithms ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image matching ; Image processing ; Information, signal and communications theory ; Matching ; Mathematical analysis ; Motion estimation ; Multilevel ; multilevel successive elimination ; normalized cross correlation ; Object detection ; Partitioning algorithms ; Partitions ; Pattern matching ; Pattern recognition ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal processing ; Subtraction Technique ; Telecommunications and information theory ; Upper bound ; Upper bounds ; Video compression ; winner update strategy</subject><ispartof>IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2227-2235</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</citedby><cites>FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768399$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18972660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Shou-Der</creatorcontrib><creatorcontrib>Lai, Shang-Hong</creatorcontrib><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cross correlation</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Fast algorithms</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image matching</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Motion estimation</subject><subject>Multilevel</subject><subject>multilevel successive elimination</subject><subject>normalized cross correlation</subject><subject>Object detection</subject><subject>Partitioning algorithms</subject><subject>Partitions</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>Video compression</subject><subject>winner update strategy</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kctrFTEYxYMotl7dC4IMgrqamvdj2V6sFupjcYvLkMn9xqZkHiYzhfrXN8MdKnThJsnH-Z0TkoPQa4JPCMHm0-7i5wnFWC8Ll0Q8QcfEcFKXiT4tZyxUrQg3R-hFzjcYEy6IfI6OiDaKSomPkT93eap20I3RTVB9c5O_Dv3v6sxl2FdDX30fUudi-FumbRpyrrZDSlDgUMRfYbquTvdunMJtMc9xChFuIRah7yFVV-O-pL5Ez1oXM7xa9w26Ov-8236tL398udieXtaeCzbVugFHBeOUNFxqKr0muuUtU41jUnnCFRivjGik0MoRShtOleCYaKwl-IZt0MdD7piGPzPkyXYhe4jR9TDM2WqNJZeCyUJ--C8pjWKYYFbAd4_Am2FOfXmF1ZIxilXJ2yB8gPzyQQlaO6bQuXRnCbZLT7b0ZJee7NpTsbxdc-emg_0_w1pMAd6vgMvexTa53of8wC0Xa2ZM4d4cuAAADzKXXHPN2D22B6F2</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Wei, Shou-Der</creator><creator>Lai, Shang-Hong</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</title><author>Wei, Shou-Der ; Lai, Shang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cross correlation</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Fast algorithms</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image matching</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Motion estimation</topic><topic>Multilevel</topic><topic>multilevel successive elimination</topic><topic>normalized cross correlation</topic><topic>Object detection</topic><topic>Partitioning algorithms</topic><topic>Partitions</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>Video compression</topic><topic>winner update strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Shou-Der</creatorcontrib><creatorcontrib>Lai, Shang-Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Shou-Der</au><au>Lai, Shang-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>17</volume><issue>11</issue><spage>2227</spage><epage>2235</epage><pages>2227-2235</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18972660</pmid><doi>10.1109/TIP.2008.2004615</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2227-2235
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_20768399
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Cross correlation
Distortion measurement
Exact sciences and technology
Fast algorithms
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image matching
Image processing
Information, signal and communications theory
Matching
Mathematical analysis
Motion estimation
Multilevel
multilevel successive elimination
normalized cross correlation
Object detection
Partitioning algorithms
Partitions
Pattern matching
Pattern recognition
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Signal processing
Subtraction Technique
Telecommunications and information theory
Upper bound
Upper bounds
Video compression
winner update strategy
title Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Template%20Matching%20Based%20on%20Normalized%20Cross%20Correlation%20With%20Adaptive%20Multilevel%20Winner%20Update&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wei,%20Shou-Der&rft.date=2008-11-01&rft.volume=17&rft.issue=11&rft.spage=2227&rft.epage=2235&rft.pages=2227-2235&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2008.2004615&rft_dat=%3Cproquest_pasca%3E2329055111%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-8bea253421b46826c818f4f37ba367c147e9c795b6587a122b42754018086ecb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863320765&rft_id=info:pmid/18972660&rft_ieee_id=4648483&rfr_iscdi=true