Loading…

A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition

A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal sing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1997-12, Vol.45 (12), p.3073-3083
Main Authors: Baogang Hu, Gosine, R.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033
cites cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033
container_end_page 3083
container_issue 12
container_start_page 3073
container_title IEEE transactions on signal processing
container_volume 45
creator Baogang Hu
Gosine, R.G.
description A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.
doi_str_mv 10.1109/78.650268
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2079988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650268</ieee_id><sourcerecordid>28523627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxRdRsFYPXj3lIIKHrcluNtl4K8UvKHhR8LZks5M2sk1qkrX435uypad5zPzmMfOy7JrgGSFYPPB6xipcsPokmxBBSY4pZ6dJ46rMq5p_nWcXIXxjTCgVbJLZObKwQ2BWYEP0g4qDB7SBuHYd0s6jYOwQnOlkn-TKpuIhegO_SRmLdmsTAVlnAjwiCNFsZDTOImk7tJUxgrdpQbmVNfv-ZXamZR_g6lCn2efz08fiNV--v7wt5stclZjFvOaa0o5XvMAtE1pTLRhmTEhJW4VpTWWrCC2qirSlbgUDoqigokgEkx0uy2l2N_puvfsZ0l3NxgQFfS8tuCE0RV0VJSt4Au9HUHkXggfdbH36wf81BDf7RBteN2Oiib09mMqgZK-9tMqE40KBuRD1HrsZMQMAx-nB4x-fDn8p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28523627</pqid></control><display><type>article</type><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baogang Hu ; Gosine, R.G.</creator><creatorcontrib>Baogang Hu ; Gosine, R.G.</creatorcontrib><description>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.650268</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Closed-form solution ; Computer science; control theory; systems ; Computer simulation ; Data mining ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feature extraction ; Information, signal and communications theory ; Oceans ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Phase estimation ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Telecommunications and information theory ; White noise</subject><ispartof>IEEE transactions on signal processing, 1997-12, Vol.45 (12), p.3073-3083</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</citedby><cites>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2079988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Gosine, R.G.</creatorcontrib><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Closed-form solution</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Information, signal and communications theory</subject><subject>Oceans</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Phase estimation</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>White noise</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxRdRsFYPXj3lIIKHrcluNtl4K8UvKHhR8LZks5M2sk1qkrX435uypad5zPzmMfOy7JrgGSFYPPB6xipcsPokmxBBSY4pZ6dJ46rMq5p_nWcXIXxjTCgVbJLZObKwQ2BWYEP0g4qDB7SBuHYd0s6jYOwQnOlkn-TKpuIhegO_SRmLdmsTAVlnAjwiCNFsZDTOImk7tJUxgrdpQbmVNfv-ZXamZR_g6lCn2efz08fiNV--v7wt5stclZjFvOaa0o5XvMAtE1pTLRhmTEhJW4VpTWWrCC2qirSlbgUDoqigokgEkx0uy2l2N_puvfsZ0l3NxgQFfS8tuCE0RV0VJSt4Au9HUHkXggfdbH36wf81BDf7RBteN2Oiib09mMqgZK-9tMqE40KBuRD1HrsZMQMAx-nB4x-fDn8p</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Baogang Hu</creator><creator>Gosine, R.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971201</creationdate><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><author>Baogang Hu ; Gosine, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Closed-form solution</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Information, signal and communications theory</topic><topic>Oceans</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Phase estimation</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Gosine, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baogang Hu</au><au>Gosine, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>45</volume><issue>12</issue><spage>3073</spage><epage>3083</epage><pages>3073-3083</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.650268</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1997-12, Vol.45 (12), p.3073-3083
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_2079988
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Closed-form solution
Computer science
control theory
systems
Computer simulation
Data mining
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Exact sciences and technology
Feature extraction
Information, signal and communications theory
Oceans
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Phase estimation
Signal and communications theory
Signal to noise ratio
Signal, noise
Telecommunications and information theory
White noise
title A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20eigenstructure%20method%20for%20sinusoidal%20signal%20retrieval%20in%20white%20noise:%20estimation%20and%20pattern%20recognition&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Baogang%20Hu&rft.date=1997-12-01&rft.volume=45&rft.issue=12&rft.spage=3073&rft.epage=3083&rft.pages=3073-3083&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.650268&rft_dat=%3Cproquest_pasca%3E28523627%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28523627&rft_id=info:pmid/&rft_ieee_id=650268&rfr_iscdi=true