Loading…
A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition
A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal sing...
Saved in:
Published in: | IEEE transactions on signal processing 1997-12, Vol.45 (12), p.3073-3083 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033 |
container_end_page | 3083 |
container_issue | 12 |
container_start_page | 3073 |
container_title | IEEE transactions on signal processing |
container_volume | 45 |
creator | Baogang Hu Gosine, R.G. |
description | A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed. |
doi_str_mv | 10.1109/78.650268 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2079988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650268</ieee_id><sourcerecordid>28523627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxRdRsFYPXj3lIIKHrcluNtl4K8UvKHhR8LZks5M2sk1qkrX435uypad5zPzmMfOy7JrgGSFYPPB6xipcsPokmxBBSY4pZ6dJ46rMq5p_nWcXIXxjTCgVbJLZObKwQ2BWYEP0g4qDB7SBuHYd0s6jYOwQnOlkn-TKpuIhegO_SRmLdmsTAVlnAjwiCNFsZDTOImk7tJUxgrdpQbmVNfv-ZXamZR_g6lCn2efz08fiNV--v7wt5stclZjFvOaa0o5XvMAtE1pTLRhmTEhJW4VpTWWrCC2qirSlbgUDoqigokgEkx0uy2l2N_puvfsZ0l3NxgQFfS8tuCE0RV0VJSt4Au9HUHkXggfdbH36wf81BDf7RBteN2Oiib09mMqgZK-9tMqE40KBuRD1HrsZMQMAx-nB4x-fDn8p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28523627</pqid></control><display><type>article</type><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baogang Hu ; Gosine, R.G.</creator><creatorcontrib>Baogang Hu ; Gosine, R.G.</creatorcontrib><description>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.650268</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Closed-form solution ; Computer science; control theory; systems ; Computer simulation ; Data mining ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feature extraction ; Information, signal and communications theory ; Oceans ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Phase estimation ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Telecommunications and information theory ; White noise</subject><ispartof>IEEE transactions on signal processing, 1997-12, Vol.45 (12), p.3073-3083</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</citedby><cites>FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2079988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Gosine, R.G.</creatorcontrib><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Closed-form solution</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Information, signal and communications theory</subject><subject>Oceans</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Phase estimation</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>White noise</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxRdRsFYPXj3lIIKHrcluNtl4K8UvKHhR8LZks5M2sk1qkrX435uypad5zPzmMfOy7JrgGSFYPPB6xipcsPokmxBBSY4pZ6dJ46rMq5p_nWcXIXxjTCgVbJLZObKwQ2BWYEP0g4qDB7SBuHYd0s6jYOwQnOlkn-TKpuIhegO_SRmLdmsTAVlnAjwiCNFsZDTOImk7tJUxgrdpQbmVNfv-ZXamZR_g6lCn2efz08fiNV--v7wt5stclZjFvOaa0o5XvMAtE1pTLRhmTEhJW4VpTWWrCC2qirSlbgUDoqigokgEkx0uy2l2N_puvfsZ0l3NxgQFfS8tuCE0RV0VJSt4Au9HUHkXggfdbH36wf81BDf7RBteN2Oiib09mMqgZK-9tMqE40KBuRD1HrsZMQMAx-nB4x-fDn8p</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Baogang Hu</creator><creator>Gosine, R.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971201</creationdate><title>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</title><author>Baogang Hu ; Gosine, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Closed-form solution</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Information, signal and communications theory</topic><topic>Oceans</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Phase estimation</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Gosine, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baogang Hu</au><au>Gosine, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>45</volume><issue>12</issue><spage>3073</spage><epage>3083</epage><pages>3073-3083</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of "touching" data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.650268</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1997-12, Vol.45 (12), p.3073-3083 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_2079988 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Closed-form solution Computer science control theory systems Computer simulation Data mining Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Exact sciences and technology Feature extraction Information, signal and communications theory Oceans Pattern recognition Pattern recognition. Digital image processing. Computational geometry Phase estimation Signal and communications theory Signal to noise ratio Signal, noise Telecommunications and information theory White noise |
title | A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20eigenstructure%20method%20for%20sinusoidal%20signal%20retrieval%20in%20white%20noise:%20estimation%20and%20pattern%20recognition&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Baogang%20Hu&rft.date=1997-12-01&rft.volume=45&rft.issue=12&rft.spage=3073&rft.epage=3083&rft.pages=3073-3083&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.650268&rft_dat=%3Cproquest_pasca%3E28523627%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-87f44d75720b69ff4f960669aa4bc0484abc142551b3fb96e1c4949269a6ad033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28523627&rft_id=info:pmid/&rft_ieee_id=650268&rfr_iscdi=true |