Loading…
Dots, Clumps, and Filaments: The Intermittent Images of Synchrotron Emission in Random Magnetic Fields of Young Supernova Remnants
Nonthermal X-ray emission in some supernova remnants originates from synchrotron radiation of ultrarelativistic particles in turbulent magnetic fields. We address the effect of a random magnetic field on synchrotron emission images and spectra. A random magnetic field is simulated to construct synch...
Saved in:
Published in: | The Astrophysical journal 2008-12, Vol.689 (2), p.L133-L136 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonthermal X-ray emission in some supernova remnants originates from synchrotron radiation of ultrarelativistic particles in turbulent magnetic fields. We address the effect of a random magnetic field on synchrotron emission images and spectra. A random magnetic field is simulated to construct synchrotron emission maps of a source with a steady distribution of ultrarelativistic electrons. Nonsteady localized structures (dots, clumps, and filaments), in which the magnetic field reaches exceptionally high values, typically arise in the random field sample. These magnetic field concentrations dominate the synchrotron emission (integrated along the line of sight) from the highest energy electrons in the cutoff regime of the distribution, resulting in an evolving, intermittent, clumpy appearance. The simulated structures resemble those observed in X-ray images of some young supernova remnants. The lifetime of X-ray clumps can be short enough to be consistent with that observed even in the case of a steady particle distribution. The efficiency of synchrotron radiation from the cutoff regime in the electron spectrum is strongly enhanced in a turbulent field compared to emission from a uniform field of the same magnitude. |
---|---|
ISSN: | 1538-4357 0004-637X 1538-4357 |
DOI: | 10.1086/595868 |