Loading…
Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach
It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has b...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2009-02, Vol.47 (2), p.455-467 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843 |
container_end_page | 467 |
container_issue | 2 |
container_start_page | 455 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 47 |
creator | Pauwels, V.R.N. Balenzano, A. Satalino, G. Skriver, H. Verhoest, N.E.C. Mattia, F. |
description | It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing. |
doi_str_mv | 10.1109/TGRS.2008.2007849 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21151609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4752725</ieee_id><sourcerecordid>2295153921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1podu0P6D0IgqlJ6f6tKTelqT5gISUbHI2E3mcKGhtV5IPW-h_j8wuOfQyc5jnnXmHt6o-M3rMGLU_7s5vN8ecUrMUbaR9U62YUqamjZRvqxVltqm5sfx99SGlZ0qZVEyvqn83U_Zb_xeyHwcy9mQz-kAudl2EOXhHrscOA_kNEbaYMSZyn_zwSDa7IT9hLsB6wpjniOQWOojkFDL8JOuBXA4ZHyNk7Mj1HLLvfHJ-Cn6AuCuiKY7gnj5W73oICT8d-lF1f_br7uSivro5vzxZX9VOWJ1rwTsQkhoQqqe251Ip9iClU520rHngwvaamr5rlLXCsR6RCgdKAzZCSCPFUfV9v7ec_TNjyu222MEQYMBxTq1ptJZac1vIr_-Rz-Mch2KuNUrLhjfMFIjtIRfHlCL27RT9tjzWMtoucbRLHO0SR3uIo2i-HRZDchD6CIPz6VXIGVOsoQv3Zc95RHwdS6245kq8ANrGk8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857462618</pqid></control><display><type>article</type><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</creator><creatorcontrib>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</creatorcontrib><description>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2007849</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Atmosphere ; Atmospheric modeling ; Calibration ; Conductivity ; Content based retrieval ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydraulics ; hydrology ; Information resources ; Information retrieval ; Internal geophysics ; Land ; Land surface ; Mathematical models ; Parameter estimation ; Remote sensing ; Soil (material) ; Soil moisture ; Studies ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Texture</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-02, Vol.47 (2), p.455-467</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</citedby><cites>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4752725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21151609$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauwels, V.R.N.</creatorcontrib><creatorcontrib>Balenzano, A.</creatorcontrib><creatorcontrib>Satalino, G.</creatorcontrib><creatorcontrib>Skriver, H.</creatorcontrib><creatorcontrib>Verhoest, N.E.C.</creatorcontrib><creatorcontrib>Mattia, F.</creatorcontrib><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</description><subject>Applied geophysics</subject><subject>Atmosphere</subject><subject>Atmospheric modeling</subject><subject>Calibration</subject><subject>Conductivity</subject><subject>Content based retrieval</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydraulics</subject><subject>hydrology</subject><subject>Information resources</subject><subject>Information retrieval</subject><subject>Internal geophysics</subject><subject>Land</subject><subject>Land surface</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Remote sensing</subject><subject>Soil (material)</subject><subject>Soil moisture</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Texture</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhk1podu0P6D0IgqlJ6f6tKTelqT5gISUbHI2E3mcKGhtV5IPW-h_j8wuOfQyc5jnnXmHt6o-M3rMGLU_7s5vN8ecUrMUbaR9U62YUqamjZRvqxVltqm5sfx99SGlZ0qZVEyvqn83U_Zb_xeyHwcy9mQz-kAudl2EOXhHrscOA_kNEbaYMSZyn_zwSDa7IT9hLsB6wpjniOQWOojkFDL8JOuBXA4ZHyNk7Mj1HLLvfHJ-Cn6AuCuiKY7gnj5W73oICT8d-lF1f_br7uSivro5vzxZX9VOWJ1rwTsQkhoQqqe251Ip9iClU520rHngwvaamr5rlLXCsR6RCgdKAzZCSCPFUfV9v7ec_TNjyu222MEQYMBxTq1ptJZac1vIr_-Rz-Mch2KuNUrLhjfMFIjtIRfHlCL27RT9tjzWMtoucbRLHO0SR3uIo2i-HRZDchD6CIPz6VXIGVOsoQv3Zc95RHwdS6245kq8ANrGk8o</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Pauwels, V.R.N.</creator><creator>Balenzano, A.</creator><creator>Satalino, G.</creator><creator>Skriver, H.</creator><creator>Verhoest, N.E.C.</creator><creator>Mattia, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090201</creationdate><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><author>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied geophysics</topic><topic>Atmosphere</topic><topic>Atmospheric modeling</topic><topic>Calibration</topic><topic>Conductivity</topic><topic>Content based retrieval</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydraulics</topic><topic>hydrology</topic><topic>Information resources</topic><topic>Information retrieval</topic><topic>Internal geophysics</topic><topic>Land</topic><topic>Land surface</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Remote sensing</topic><topic>Soil (material)</topic><topic>Soil moisture</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauwels, V.R.N.</creatorcontrib><creatorcontrib>Balenzano, A.</creatorcontrib><creatorcontrib>Satalino, G.</creatorcontrib><creatorcontrib>Skriver, H.</creatorcontrib><creatorcontrib>Verhoest, N.E.C.</creatorcontrib><creatorcontrib>Mattia, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauwels, V.R.N.</au><au>Balenzano, A.</au><au>Satalino, G.</au><au>Skriver, H.</au><au>Verhoest, N.E.C.</au><au>Mattia, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>47</volume><issue>2</issue><spage>455</spage><epage>467</epage><pages>455-467</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2007849</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2009-02, Vol.47 (2), p.455-467 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_pascalfrancis_primary_21151609 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied geophysics Atmosphere Atmospheric modeling Calibration Conductivity Content based retrieval Earth sciences Earth, ocean, space Exact sciences and technology Hydraulics hydrology Information resources Information retrieval Internal geophysics Land Land surface Mathematical models Parameter estimation Remote sensing Soil (material) Soil moisture Studies Synthetic aperture radar synthetic aperture radar (SAR) Texture |
title | Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Soil%20Hydraulic%20Model%20Parameters%20Using%20Synthetic%20Aperture%20Radar%20Data:%20An%20Integrated%20Multidisciplinary%20Approach&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pauwels,%20V.R.N.&rft.date=2009-02-01&rft.volume=47&rft.issue=2&rft.spage=455&rft.epage=467&rft.pages=455-467&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2007849&rft_dat=%3Cproquest_pasca%3E2295153921%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857462618&rft_id=info:pmid/&rft_ieee_id=4752725&rfr_iscdi=true |