Loading…

Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach

It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2009-02, Vol.47 (2), p.455-467
Main Authors: Pauwels, V.R.N., Balenzano, A., Satalino, G., Skriver, H., Verhoest, N.E.C., Mattia, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843
cites cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843
container_end_page 467
container_issue 2
container_start_page 455
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Pauwels, V.R.N.
Balenzano, A.
Satalino, G.
Skriver, H.
Verhoest, N.E.C.
Mattia, F.
description It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.
doi_str_mv 10.1109/TGRS.2008.2007849
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21151609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4752725</ieee_id><sourcerecordid>2295153921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1podu0P6D0IgqlJ6f6tKTelqT5gISUbHI2E3mcKGhtV5IPW-h_j8wuOfQyc5jnnXmHt6o-M3rMGLU_7s5vN8ecUrMUbaR9U62YUqamjZRvqxVltqm5sfx99SGlZ0qZVEyvqn83U_Zb_xeyHwcy9mQz-kAudl2EOXhHrscOA_kNEbaYMSZyn_zwSDa7IT9hLsB6wpjniOQWOojkFDL8JOuBXA4ZHyNk7Mj1HLLvfHJ-Cn6AuCuiKY7gnj5W73oICT8d-lF1f_br7uSivro5vzxZX9VOWJ1rwTsQkhoQqqe251Ip9iClU520rHngwvaamr5rlLXCsR6RCgdKAzZCSCPFUfV9v7ec_TNjyu222MEQYMBxTq1ptJZac1vIr_-Rz-Mch2KuNUrLhjfMFIjtIRfHlCL27RT9tjzWMtoucbRLHO0SR3uIo2i-HRZDchD6CIPz6VXIGVOsoQv3Zc95RHwdS6245kq8ANrGk8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857462618</pqid></control><display><type>article</type><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</creator><creatorcontrib>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</creatorcontrib><description>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2007849</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Atmosphere ; Atmospheric modeling ; Calibration ; Conductivity ; Content based retrieval ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydraulics ; hydrology ; Information resources ; Information retrieval ; Internal geophysics ; Land ; Land surface ; Mathematical models ; Parameter estimation ; Remote sensing ; Soil (material) ; Soil moisture ; Studies ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Texture</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-02, Vol.47 (2), p.455-467</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</citedby><cites>FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4752725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21151609$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauwels, V.R.N.</creatorcontrib><creatorcontrib>Balenzano, A.</creatorcontrib><creatorcontrib>Satalino, G.</creatorcontrib><creatorcontrib>Skriver, H.</creatorcontrib><creatorcontrib>Verhoest, N.E.C.</creatorcontrib><creatorcontrib>Mattia, F.</creatorcontrib><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</description><subject>Applied geophysics</subject><subject>Atmosphere</subject><subject>Atmospheric modeling</subject><subject>Calibration</subject><subject>Conductivity</subject><subject>Content based retrieval</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydraulics</subject><subject>hydrology</subject><subject>Information resources</subject><subject>Information retrieval</subject><subject>Internal geophysics</subject><subject>Land</subject><subject>Land surface</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Remote sensing</subject><subject>Soil (material)</subject><subject>Soil moisture</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Texture</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhk1podu0P6D0IgqlJ6f6tKTelqT5gISUbHI2E3mcKGhtV5IPW-h_j8wuOfQyc5jnnXmHt6o-M3rMGLU_7s5vN8ecUrMUbaR9U62YUqamjZRvqxVltqm5sfx99SGlZ0qZVEyvqn83U_Zb_xeyHwcy9mQz-kAudl2EOXhHrscOA_kNEbaYMSZyn_zwSDa7IT9hLsB6wpjniOQWOojkFDL8JOuBXA4ZHyNk7Mj1HLLvfHJ-Cn6AuCuiKY7gnj5W73oICT8d-lF1f_br7uSivro5vzxZX9VOWJ1rwTsQkhoQqqe251Ip9iClU520rHngwvaamr5rlLXCsR6RCgdKAzZCSCPFUfV9v7ec_TNjyu222MEQYMBxTq1ptJZac1vIr_-Rz-Mch2KuNUrLhjfMFIjtIRfHlCL27RT9tjzWMtoucbRLHO0SR3uIo2i-HRZDchD6CIPz6VXIGVOsoQv3Zc95RHwdS6245kq8ANrGk8o</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Pauwels, V.R.N.</creator><creator>Balenzano, A.</creator><creator>Satalino, G.</creator><creator>Skriver, H.</creator><creator>Verhoest, N.E.C.</creator><creator>Mattia, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090201</creationdate><title>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</title><author>Pauwels, V.R.N. ; Balenzano, A. ; Satalino, G. ; Skriver, H. ; Verhoest, N.E.C. ; Mattia, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied geophysics</topic><topic>Atmosphere</topic><topic>Atmospheric modeling</topic><topic>Calibration</topic><topic>Conductivity</topic><topic>Content based retrieval</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydraulics</topic><topic>hydrology</topic><topic>Information resources</topic><topic>Information retrieval</topic><topic>Internal geophysics</topic><topic>Land</topic><topic>Land surface</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Remote sensing</topic><topic>Soil (material)</topic><topic>Soil moisture</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauwels, V.R.N.</creatorcontrib><creatorcontrib>Balenzano, A.</creatorcontrib><creatorcontrib>Satalino, G.</creatorcontrib><creatorcontrib>Skriver, H.</creatorcontrib><creatorcontrib>Verhoest, N.E.C.</creatorcontrib><creatorcontrib>Mattia, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauwels, V.R.N.</au><au>Balenzano, A.</au><au>Satalino, G.</au><au>Skriver, H.</au><au>Verhoest, N.E.C.</au><au>Mattia, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>47</volume><issue>2</issue><spage>455</spage><epage>467</epage><pages>455-467</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>It is widely recognized that synthetic aperture radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such as, for example, hydraulic conductivity values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing and land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure based on the extended Kalman filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2007849</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-02, Vol.47 (2), p.455-467
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_21151609
source IEEE Electronic Library (IEL) Journals
subjects Applied geophysics
Atmosphere
Atmospheric modeling
Calibration
Conductivity
Content based retrieval
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydraulics
hydrology
Information resources
Information retrieval
Internal geophysics
Land
Land surface
Mathematical models
Parameter estimation
Remote sensing
Soil (material)
Soil moisture
Studies
Synthetic aperture radar
synthetic aperture radar (SAR)
Texture
title Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Soil%20Hydraulic%20Model%20Parameters%20Using%20Synthetic%20Aperture%20Radar%20Data:%20An%20Integrated%20Multidisciplinary%20Approach&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pauwels,%20V.R.N.&rft.date=2009-02-01&rft.volume=47&rft.issue=2&rft.spage=455&rft.epage=467&rft.pages=455-467&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2007849&rft_dat=%3Cproquest_pasca%3E2295153921%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-32da3408a35f09f24551b44c5d4916b239f708fd65993c1fee03ca57ae6334843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857462618&rft_id=info:pmid/&rft_ieee_id=4752725&rfr_iscdi=true