Loading…

Double Turbo Equalization of Continuous Phase Modulation with Frequency Domain Processing

In this paper, a doubly-iterative linear receiver, equipped with a soft-information aided frequency domain minimum mean-squared error (MMSE) equalizer, is proposed for the combined equalization and decoding of coded continuous phase modulation (CPM) signals over long multipath fading channels. In th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2009-02, Vol.57 (2), p.423-429
Main Authors: Ozgul, B., Koca, M., Delic, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a doubly-iterative linear receiver, equipped with a soft-information aided frequency domain minimum mean-squared error (MMSE) equalizer, is proposed for the combined equalization and decoding of coded continuous phase modulation (CPM) signals over long multipath fading channels. In the proposed receiver architecture, the front-end frequency domain equalizer (FDE) is followed by the soft-input, soft-output (SISO) CPM demodulator and channel decoder modules. The receiver employs double turbo processing by performing back-end demodulation/decoding iterations per each equalization iteration to improve the a priori information for the front-end FDE. As presented by the computational complexity analysis and simulations, this process provides not only a significant reduction in the overall computational complexity, but also a performance improvement over the previously proposed iterative and noniterative MMSE receivers.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2009.02.060674