Loading…
Mobile Location Estimator in a Rough Wireless Environment Using Extended Kalman-Based IMM and Data Fusion
An extended Kalman-based interacting multiple model (EK-IMM) smoother is proposed for mobile location estimation with the data fusion of the time of arrival (TOA) and the received signal strength (RSS) measurements in a rough wireless environment. The extended Kalman filter is used for nonlinear est...
Saved in:
Published in: | IEEE transactions on vehicular technology 2009-03, Vol.58 (3), p.1157-1169 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An extended Kalman-based interacting multiple model (EK-IMM) smoother is proposed for mobile location estimation with the data fusion of the time of arrival (TOA) and the received signal strength (RSS) measurements in a rough wireless environment. The extended Kalman filter is used for nonlinear estimation. The IMM is employed as a switch between the line-of-sight (LOS) and non-LOS (NLOS) states, which are considered to be a Markov process with two interactive modes. Combining extended Kalman filtering with the IMM scheme for accurately smooth range estimation between the corresponding base station (BS) and mobile station (MS) in the rough wireless environment, the proposed robust mobile location estimator, in association with data fusion, can efficiently mitigate the NLOS effects on the measurement range error. Simulation results illustrate that the performance of the proposed method has been significantly improved in the LOS/NLOS transition case. Moreover, the performance of the EK-IMM smoother with data fusion is also better than that with a single measurement used alone. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2008.928649 |