Loading…

A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction

The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investi...

Full description

Saved in:
Bibliographic Details
Published in:Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE) 2009-08, Vol.19 (3), p.283-288
Main Authors: Anderson, John E., Silman, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3
cites cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3
container_end_page 288
container_issue 3
container_start_page 283
container_title Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)
container_volume 19
creator Anderson, John E.
Silman, Robert
description The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.
doi_str_mv 10.2749/101686609788957946
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21766664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34759771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsH78AU-5KF5WJ5tsPg4epGotFAQ_zkvMztbINtFkq_TfG6l6ETSXhJnnfWcmUxQHFE4qyfUpBSqUEKClUrqWmouNYpRDrARWw2Z-Z6DMBN8udlJ6BqgYF3xUNOdk5jok45XtkUz9G_ohxBUJHbkb4tIOy2h6cunnziNG5-fkApOb-8-sGXDuMJEuRDKJiP4pLBOSiUnkFtusdcHvFVud6RPuf927xcPV5f34upzdTKbj81lpGadDKS1aWyvKasUE1bVtRatrITVQSmvaaskMx8raTlFpaZuHrB61kQCaCSOR7RZHa9-XGF6XmIZm4ZLFvjcec1cN47LWUtJ_wQqk0sAhg8d_glQBcAWK64xWa9TGkFLErnmJbmHiqqHQfO6n-b2fLDr88jfJmr6LxluXfpQVlSIfnrmzNed8_uiFeQ-xb5vBrPoQv0XsjzofcoKhiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800480849</pqid></control><display><type>article</type><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><source>Taylor and Francis Science and Technology Collection</source><creator>Anderson, John E. ; Silman, Robert</creator><creatorcontrib>Anderson, John E. ; Silman, Robert</creatorcontrib><description>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</description><identifier>ISSN: 1016-8664</identifier><identifier>EISSN: 1683-0350</identifier><identifier>DOI: 10.2749/101686609788957946</identifier><language>eng</language><publisher>Zürich: Taylor &amp; Francis</publisher><subject>Air pollution ; Applied sciences ; Bioclimatic building ; Buildings ; Buildings. Public works ; Carbon dioxide ; Climate change ; Climatology and bioclimatics for buildings ; Construction ; Design engineering ; Emission analysis ; Emissions control ; Energy use ; Exact sciences and technology ; Greenhouse effect ; greenhouse gas ; Greenhouse gases ; Inventories ; life cycle ; Life cycle engineering ; Materials selection ; Project management. Process of design ; Recycling ; Reduction ; Stockpiling ; Strategy ; structural engineer ; Structural engineering ; Structural engineers ; sustainability ; Types of buildings</subject><ispartof>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE), 2009-08, Vol.19 (3), p.283-288</ispartof><rights>2009 IABSE 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</citedby><cites>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21766664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, John E.</creatorcontrib><creatorcontrib>Silman, Robert</creatorcontrib><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><title>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</title><description>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</description><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Bioclimatic building</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Construction</subject><subject>Design engineering</subject><subject>Emission analysis</subject><subject>Emissions control</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Greenhouse effect</subject><subject>greenhouse gas</subject><subject>Greenhouse gases</subject><subject>Inventories</subject><subject>life cycle</subject><subject>Life cycle engineering</subject><subject>Materials selection</subject><subject>Project management. Process of design</subject><subject>Recycling</subject><subject>Reduction</subject><subject>Stockpiling</subject><subject>Strategy</subject><subject>structural engineer</subject><subject>Structural engineering</subject><subject>Structural engineers</subject><subject>sustainability</subject><subject>Types of buildings</subject><issn>1016-8664</issn><issn>1683-0350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhhdRsH78AU-5KF5WJ5tsPg4epGotFAQ_zkvMztbINtFkq_TfG6l6ETSXhJnnfWcmUxQHFE4qyfUpBSqUEKClUrqWmouNYpRDrARWw2Z-Z6DMBN8udlJ6BqgYF3xUNOdk5jok45XtkUz9G_ohxBUJHbkb4tIOy2h6cunnziNG5-fkApOb-8-sGXDuMJEuRDKJiP4pLBOSiUnkFtusdcHvFVud6RPuf927xcPV5f34upzdTKbj81lpGadDKS1aWyvKasUE1bVtRatrITVQSmvaaskMx8raTlFpaZuHrB61kQCaCSOR7RZHa9-XGF6XmIZm4ZLFvjcec1cN47LWUtJ_wQqk0sAhg8d_glQBcAWK64xWa9TGkFLErnmJbmHiqqHQfO6n-b2fLDr88jfJmr6LxluXfpQVlSIfnrmzNed8_uiFeQ-xb5vBrPoQv0XsjzofcoKhiQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Anderson, John E.</creator><creator>Silman, Robert</creator><general>Taylor &amp; Francis</general><general>IABSE</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>200908</creationdate><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><author>Anderson, John E. ; Silman, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Bioclimatic building</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Construction</topic><topic>Design engineering</topic><topic>Emission analysis</topic><topic>Emissions control</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Greenhouse effect</topic><topic>greenhouse gas</topic><topic>Greenhouse gases</topic><topic>Inventories</topic><topic>life cycle</topic><topic>Life cycle engineering</topic><topic>Materials selection</topic><topic>Project management. Process of design</topic><topic>Recycling</topic><topic>Reduction</topic><topic>Stockpiling</topic><topic>Strategy</topic><topic>structural engineer</topic><topic>Structural engineering</topic><topic>Structural engineers</topic><topic>sustainability</topic><topic>Types of buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, John E.</creatorcontrib><creatorcontrib>Silman, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, John E.</au><au>Silman, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</atitle><jtitle>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</jtitle><date>2009-08</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>1016-8664</issn><eissn>1683-0350</eissn><abstract>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</abstract><cop>Zürich</cop><pub>Taylor &amp; Francis</pub><doi>10.2749/101686609788957946</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1016-8664
ispartof Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE), 2009-08, Vol.19 (3), p.283-288
issn 1016-8664
1683-0350
language eng
recordid cdi_pascalfrancis_primary_21766664
source Taylor and Francis Science and Technology Collection
subjects Air pollution
Applied sciences
Bioclimatic building
Buildings
Buildings. Public works
Carbon dioxide
Climate change
Climatology and bioclimatics for buildings
Construction
Design engineering
Emission analysis
Emissions control
Energy use
Exact sciences and technology
Greenhouse effect
greenhouse gas
Greenhouse gases
Inventories
life cycle
Life cycle engineering
Materials selection
Project management. Process of design
Recycling
Reduction
Stockpiling
Strategy
structural engineer
Structural engineering
Structural engineers
sustainability
Types of buildings
title A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Life%20Cycle%20Inventory%20of%20Structural%20Engineering%20Design%20Strategies%20for%20Greenhouse%20Gas%20Reduction&rft.jtitle=Structural%20engineering%20international%20:%20journal%20of%20the%20International%20Association%20for%20Bridge%20and%20Structural%20Engineering%20(IABSE)&rft.au=Anderson,%20John%20E.&rft.date=2009-08&rft.volume=19&rft.issue=3&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=1016-8664&rft.eissn=1683-0350&rft_id=info:doi/10.2749/101686609788957946&rft_dat=%3Cproquest_pasca%3E34759771%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800480849&rft_id=info:pmid/&rfr_iscdi=true