Loading…
A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction
The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investi...
Saved in:
Published in: | Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE) 2009-08, Vol.19 (3), p.283-288 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3 |
container_end_page | 288 |
container_issue | 3 |
container_start_page | 283 |
container_title | Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE) |
container_volume | 19 |
creator | Anderson, John E. Silman, Robert |
description | The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment. |
doi_str_mv | 10.2749/101686609788957946 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21766664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34759771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsH78AU-5KF5WJ5tsPg4epGotFAQ_zkvMztbINtFkq_TfG6l6ETSXhJnnfWcmUxQHFE4qyfUpBSqUEKClUrqWmouNYpRDrARWw2Z-Z6DMBN8udlJ6BqgYF3xUNOdk5jok45XtkUz9G_ohxBUJHbkb4tIOy2h6cunnziNG5-fkApOb-8-sGXDuMJEuRDKJiP4pLBOSiUnkFtusdcHvFVud6RPuf927xcPV5f34upzdTKbj81lpGadDKS1aWyvKasUE1bVtRatrITVQSmvaaskMx8raTlFpaZuHrB61kQCaCSOR7RZHa9-XGF6XmIZm4ZLFvjcec1cN47LWUtJ_wQqk0sAhg8d_glQBcAWK64xWa9TGkFLErnmJbmHiqqHQfO6n-b2fLDr88jfJmr6LxluXfpQVlSIfnrmzNed8_uiFeQ-xb5vBrPoQv0XsjzofcoKhiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800480849</pqid></control><display><type>article</type><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><source>Taylor and Francis Science and Technology Collection</source><creator>Anderson, John E. ; Silman, Robert</creator><creatorcontrib>Anderson, John E. ; Silman, Robert</creatorcontrib><description>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</description><identifier>ISSN: 1016-8664</identifier><identifier>EISSN: 1683-0350</identifier><identifier>DOI: 10.2749/101686609788957946</identifier><language>eng</language><publisher>Zürich: Taylor & Francis</publisher><subject>Air pollution ; Applied sciences ; Bioclimatic building ; Buildings ; Buildings. Public works ; Carbon dioxide ; Climate change ; Climatology and bioclimatics for buildings ; Construction ; Design engineering ; Emission analysis ; Emissions control ; Energy use ; Exact sciences and technology ; Greenhouse effect ; greenhouse gas ; Greenhouse gases ; Inventories ; life cycle ; Life cycle engineering ; Materials selection ; Project management. Process of design ; Recycling ; Reduction ; Stockpiling ; Strategy ; structural engineer ; Structural engineering ; Structural engineers ; sustainability ; Types of buildings</subject><ispartof>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE), 2009-08, Vol.19 (3), p.283-288</ispartof><rights>2009 IABSE 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</citedby><cites>FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21766664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, John E.</creatorcontrib><creatorcontrib>Silman, Robert</creatorcontrib><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><title>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</title><description>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</description><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Bioclimatic building</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Construction</subject><subject>Design engineering</subject><subject>Emission analysis</subject><subject>Emissions control</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Greenhouse effect</subject><subject>greenhouse gas</subject><subject>Greenhouse gases</subject><subject>Inventories</subject><subject>life cycle</subject><subject>Life cycle engineering</subject><subject>Materials selection</subject><subject>Project management. Process of design</subject><subject>Recycling</subject><subject>Reduction</subject><subject>Stockpiling</subject><subject>Strategy</subject><subject>structural engineer</subject><subject>Structural engineering</subject><subject>Structural engineers</subject><subject>sustainability</subject><subject>Types of buildings</subject><issn>1016-8664</issn><issn>1683-0350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhhdRsH78AU-5KF5WJ5tsPg4epGotFAQ_zkvMztbINtFkq_TfG6l6ETSXhJnnfWcmUxQHFE4qyfUpBSqUEKClUrqWmouNYpRDrARWw2Z-Z6DMBN8udlJ6BqgYF3xUNOdk5jok45XtkUz9G_ohxBUJHbkb4tIOy2h6cunnziNG5-fkApOb-8-sGXDuMJEuRDKJiP4pLBOSiUnkFtusdcHvFVud6RPuf927xcPV5f34upzdTKbj81lpGadDKS1aWyvKasUE1bVtRatrITVQSmvaaskMx8raTlFpaZuHrB61kQCaCSOR7RZHa9-XGF6XmIZm4ZLFvjcec1cN47LWUtJ_wQqk0sAhg8d_glQBcAWK64xWa9TGkFLErnmJbmHiqqHQfO6n-b2fLDr88jfJmr6LxluXfpQVlSIfnrmzNed8_uiFeQ-xb5vBrPoQv0XsjzofcoKhiQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Anderson, John E.</creator><creator>Silman, Robert</creator><general>Taylor & Francis</general><general>IABSE</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>200908</creationdate><title>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</title><author>Anderson, John E. ; Silman, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Bioclimatic building</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Construction</topic><topic>Design engineering</topic><topic>Emission analysis</topic><topic>Emissions control</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Greenhouse effect</topic><topic>greenhouse gas</topic><topic>Greenhouse gases</topic><topic>Inventories</topic><topic>life cycle</topic><topic>Life cycle engineering</topic><topic>Materials selection</topic><topic>Project management. Process of design</topic><topic>Recycling</topic><topic>Reduction</topic><topic>Stockpiling</topic><topic>Strategy</topic><topic>structural engineer</topic><topic>Structural engineering</topic><topic>Structural engineers</topic><topic>sustainability</topic><topic>Types of buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, John E.</creatorcontrib><creatorcontrib>Silman, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, John E.</au><au>Silman, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction</atitle><jtitle>Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE)</jtitle><date>2009-08</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>1016-8664</issn><eissn>1683-0350</eissn><abstract>The paper presents the results of a life cycle inventory (LCI) for various structural engineering design strategies. The strategies focus on alternative design approaches the structural engineer can implement to minimize a building's contribution to global climate change. The approaches investigated include material selection, recycling or reusing a structure, maximizing material efficiency, thermal mass effects, and future adaptability. Analysis including operational energy use shows thermal mass effects offer the greatest potential for reducing carbon dioxide emissions. Excluding operational energy use from the LCI shows that material selection is the most favorable design strategy. Consequently, the structural engineer has a significant role in mitigating both short-term and long-term carbon dioxide emissions of the built environment.</abstract><cop>Zürich</cop><pub>Taylor & Francis</pub><doi>10.2749/101686609788957946</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1016-8664 |
ispartof | Structural engineering international : journal of the International Association for Bridge and Structural Engineering (IABSE), 2009-08, Vol.19 (3), p.283-288 |
issn | 1016-8664 1683-0350 |
language | eng |
recordid | cdi_pascalfrancis_primary_21766664 |
source | Taylor and Francis Science and Technology Collection |
subjects | Air pollution Applied sciences Bioclimatic building Buildings Buildings. Public works Carbon dioxide Climate change Climatology and bioclimatics for buildings Construction Design engineering Emission analysis Emissions control Energy use Exact sciences and technology Greenhouse effect greenhouse gas Greenhouse gases Inventories life cycle Life cycle engineering Materials selection Project management. Process of design Recycling Reduction Stockpiling Strategy structural engineer Structural engineering Structural engineers sustainability Types of buildings |
title | A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse Gas Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Life%20Cycle%20Inventory%20of%20Structural%20Engineering%20Design%20Strategies%20for%20Greenhouse%20Gas%20Reduction&rft.jtitle=Structural%20engineering%20international%20:%20journal%20of%20the%20International%20Association%20for%20Bridge%20and%20Structural%20Engineering%20(IABSE)&rft.au=Anderson,%20John%20E.&rft.date=2009-08&rft.volume=19&rft.issue=3&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=1016-8664&rft.eissn=1683-0350&rft_id=info:doi/10.2749/101686609788957946&rft_dat=%3Cproquest_pasca%3E34759771%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-7cecc58135836195cd6d95679011151d973a4e2ccf817c1d8952b9a700936a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800480849&rft_id=info:pmid/&rfr_iscdi=true |