Loading…
Storing elastic energy in carbon nanotubes
The potential performance of carbon nanotubes (CNTs) as springs for elastic energy storage is evaluated. Models are used to determine an upper bound on the energy density that can be stored in defect-free individual CNTs and in assemblies of such CNTs. The models reveal that optimal energy density m...
Saved in:
Published in: | Journal of micromechanics and microengineering 2009-09, Vol.19 (9), p.094015-094015 (5) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The potential performance of carbon nanotubes (CNTs) as springs for elastic energy storage is evaluated. Models are used to determine an upper bound on the energy density that can be stored in defect-free individual CNTs and in assemblies of such CNTs. The models reveal that optimal energy density may be achieved in small-diameter single-walled CNTs loaded in tension, with a maximum theoretical energy density for CNT groupings of 7.8 X 106 kJ m-3. Millimeter-scale CNT springs are constructed using 3 mm tall forests of multi-walled CNTs as the starting material, and tensile tests are performed to measure the springs'stiffness, strength and elastic properties. The measured strain energy density of these continuous CNT fibers is comparable to the energy density of steel springs. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/19/9/094015 |