Loading…

Interests and Limitations of Technology Scaling for Subthreshold Logic

Subthreshold logic is an efficient technique to achieve ultralow energy per operation for low-to-medium throughput applications. In this paper, the interests and limitations of technology scaling for subthreshold logic are investigated from 0.25 mum to 32 nm nodes. Scaling to 90/65 nm nodes is shown...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2009-10, Vol.17 (10), p.1508-1519
Main Authors: Bol, D., Ambroise, R., Flandre, D., Legat, J.-D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subthreshold logic is an efficient technique to achieve ultralow energy per operation for low-to-medium throughput applications. In this paper, the interests and limitations of technology scaling for subthreshold logic are investigated from 0.25 mum to 32 nm nodes. Scaling to 90/65 nm nodes is shown to be highly desirable for medium-throughput applications (1-10 MHz) due to great dynamic energy reduction. However, this interest is limited at 45/32 nm nodes by high static energy due to degraded subthreshold swing and delay variability. Moreover, for low-throughput applications (10-100 kHz), this limitation is worsened by the increase of minimum supply voltage to achieve sufficient functional yield, which results in bad energy efficiency starting at 0.13 mum node. Upsizing the channel length is proposed as a straightforward circuit-level technique to efficiently mitigate these effects. At 32 nm node, this technique reduces energy per operation by 60% at medium throughput and by two orders of magnitude at low throughput.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2008.2005413