Loading…

Scalar flux modeling of solute transport in open channel flows: Numerical tests and effects of secondary currents

Numerical experiments involving various algebraic scalar flux models for solute transport in open channel flows are presented. Five algebraic scalar flux models including these of Daly and Harlow, Abe and Suga, Suga and Abe, Sommer and So, and Wikstrom et al. are tested. For the flow computation, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydraulic research 2009-01, Vol.47 (5), p.643-655
Main Authors: Hyeongsik, Kang, Sung-Uk, Choi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical experiments involving various algebraic scalar flux models for solute transport in open channel flows are presented. Five algebraic scalar flux models including these of Daly and Harlow, Abe and Suga, Suga and Abe, Sommer and So, and Wikstrom et al. are tested. For the flow computation, a Reynolds stress model is used. The models are applied to laboratory experiments of solute transport in rectangular and compound open channel flows. The performance of each model is evaluated both qualitatively and quantitatively. It is found that Daly and Harlow's model, although simple, predicts the solute transport most accurately. Further, with reference to the simulation results, the roles of the Reynolds fluxes and secondary currents in the solute transport equation are investigated. It is found that the Reynolds fluxes and secondary currents reduce and move the peak concentration, respectively.
ISSN:0022-1686
1814-2079
DOI:10.3826/jhr.2009.3562