Loading…
A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs
A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device d...
Saved in:
Published in: | IEEE transactions on nanotechnology 2010-01, Vol.9 (1), p.108-113 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3 |
container_end_page | 113 |
container_issue | 1 |
container_start_page | 108 |
container_title | IEEE transactions on nanotechnology |
container_volume | 9 |
creator | Zeng, Lang Liu, Xiao Yan Zhao, Yu Ning He, Yu Hui Du, Gang Kang, Jin Feng Han, Ru Qi |
description | A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation. |
doi_str_mv | 10.1109/TNANO.2009.2031230 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22332633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5229361</ieee_id><sourcerecordid>875021910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEp9_AJYICTEF_Bk7YymfErRDisRm2Y5dAmlcbGfov8elFQMLy93p7rl3eLLsFIIrCEF1PZuMJtMrBECVCoYIg53sAFYEFgBwuptmissCIvq2nx2G8AEAZCXlB9l4lI_dYjlEGVvXyy6v49CscmfzW7eUfSxqM_dmLqNp8lq_uxg_V_mN9L41Pn-Z1vd3s3Cc7VnZBXOy7UfZa1qPH4vn6cPTePRcaEJJLCQjrFRQNQ3QTJEGcGUlUUBhpS3TVtmSEk6pqQiR0oISc0WU0swaTiuj8VF2ucldevc1mBDFog3adJ3sjRuC4IwCBCsI_iUZxQyVnPJEnv8hP9zgk4ggqqSRQ4jKBKENpL0LwRsrlr5dSL8SEIi1f_HjX6z9i63_9HSxTZZBy8562es2_H4ihHGKxok723CtMeb3TBGqcAnxN8tJjYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912381126</pqid></control><display><type>article</type><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><source>IEEE Xplore (Online service)</source><creator>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</creator><creatorcontrib>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</creatorcontrib><description>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2009.2031230</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Barriers ; Carrier transport ; Computer simulation ; Decision support systems ; Design optimization ; Devices ; dopant-segregated structure ; Drains ; Electronics ; Exact sciences and technology ; Fabrication ; Guidelines ; Microelectronics ; Monte Carlo method ; MOSFETs ; Saturation ; Schottky barrier MOSFETs ; Schottky barriers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicides ; Thermal resistance ; Transistors ; Voltage</subject><ispartof>IEEE transactions on nanotechnology, 2010-01, Vol.9 (1), p.108-113</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</citedby><cites>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5229361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22332633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Lang</creatorcontrib><creatorcontrib>Liu, Xiao Yan</creatorcontrib><creatorcontrib>Zhao, Yu Ning</creatorcontrib><creatorcontrib>He, Yu Hui</creatorcontrib><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Kang, Jin Feng</creatorcontrib><creatorcontrib>Han, Ru Qi</creatorcontrib><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</description><subject>Applied sciences</subject><subject>Barriers</subject><subject>Carrier transport</subject><subject>Computer simulation</subject><subject>Decision support systems</subject><subject>Design optimization</subject><subject>Devices</subject><subject>dopant-segregated structure</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Guidelines</subject><subject>Microelectronics</subject><subject>Monte Carlo method</subject><subject>MOSFETs</subject><subject>Saturation</subject><subject>Schottky barrier MOSFETs</subject><subject>Schottky barriers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicides</subject><subject>Thermal resistance</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEp9_AJYICTEF_Bk7YymfErRDisRm2Y5dAmlcbGfov8elFQMLy93p7rl3eLLsFIIrCEF1PZuMJtMrBECVCoYIg53sAFYEFgBwuptmissCIvq2nx2G8AEAZCXlB9l4lI_dYjlEGVvXyy6v49CscmfzW7eUfSxqM_dmLqNp8lq_uxg_V_mN9L41Pn-Z1vd3s3Cc7VnZBXOy7UfZa1qPH4vn6cPTePRcaEJJLCQjrFRQNQ3QTJEGcGUlUUBhpS3TVtmSEk6pqQiR0oISc0WU0swaTiuj8VF2ucldevc1mBDFog3adJ3sjRuC4IwCBCsI_iUZxQyVnPJEnv8hP9zgk4ggqqSRQ4jKBKENpL0LwRsrlr5dSL8SEIi1f_HjX6z9i63_9HSxTZZBy8562es2_H4ihHGKxok723CtMeb3TBGqcAnxN8tJjYs</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zeng, Lang</creator><creator>Liu, Xiao Yan</creator><creator>Zhao, Yu Ning</creator><creator>He, Yu Hui</creator><creator>Du, Gang</creator><creator>Kang, Jin Feng</creator><creator>Han, Ru Qi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201001</creationdate><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><author>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Barriers</topic><topic>Carrier transport</topic><topic>Computer simulation</topic><topic>Decision support systems</topic><topic>Design optimization</topic><topic>Devices</topic><topic>dopant-segregated structure</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Guidelines</topic><topic>Microelectronics</topic><topic>Monte Carlo method</topic><topic>MOSFETs</topic><topic>Saturation</topic><topic>Schottky barrier MOSFETs</topic><topic>Schottky barriers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicides</topic><topic>Thermal resistance</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lang</creatorcontrib><creatorcontrib>Liu, Xiao Yan</creatorcontrib><creatorcontrib>Zhao, Yu Ning</creatorcontrib><creatorcontrib>He, Yu Hui</creatorcontrib><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Kang, Jin Feng</creatorcontrib><creatorcontrib>Han, Ru Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lang</au><au>Liu, Xiao Yan</au><au>Zhao, Yu Ning</au><au>He, Yu Hui</au><au>Du, Gang</au><au>Kang, Jin Feng</au><au>Han, Ru Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2010-01</date><risdate>2010</risdate><volume>9</volume><issue>1</issue><spage>108</spage><epage>113</epage><pages>108-113</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2009.2031230</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2010-01, Vol.9 (1), p.108-113 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_pascalfrancis_primary_22332633 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Barriers Carrier transport Computer simulation Decision support systems Design optimization Devices dopant-segregated structure Drains Electronics Exact sciences and technology Fabrication Guidelines Microelectronics Monte Carlo method MOSFETs Saturation Schottky barrier MOSFETs Schottky barriers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicides Thermal resistance Transistors Voltage |
title | A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Study%20of%20Dopant-Segregated%20Schottky%20Barrier%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Zeng,%20Lang&rft.date=2010-01&rft.volume=9&rft.issue=1&rft.spage=108&rft.epage=113&rft.pages=108-113&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2009.2031230&rft_dat=%3Cproquest_pasca%3E875021910%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912381126&rft_id=info:pmid/&rft_ieee_id=5229361&rfr_iscdi=true |