Loading…

A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs

A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2010-01, Vol.9 (1), p.108-113
Main Authors: Zeng, Lang, Liu, Xiao Yan, Zhao, Yu Ning, He, Yu Hui, Du, Gang, Kang, Jin Feng, Han, Ru Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3
cites cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3
container_end_page 113
container_issue 1
container_start_page 108
container_title IEEE transactions on nanotechnology
container_volume 9
creator Zeng, Lang
Liu, Xiao Yan
Zhao, Yu Ning
He, Yu Hui
Du, Gang
Kang, Jin Feng
Han, Ru Qi
description A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.
doi_str_mv 10.1109/TNANO.2009.2031230
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22332633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5229361</ieee_id><sourcerecordid>875021910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEp9_AJYICTEF_Bk7YymfErRDisRm2Y5dAmlcbGfov8elFQMLy93p7rl3eLLsFIIrCEF1PZuMJtMrBECVCoYIg53sAFYEFgBwuptmissCIvq2nx2G8AEAZCXlB9l4lI_dYjlEGVvXyy6v49CscmfzW7eUfSxqM_dmLqNp8lq_uxg_V_mN9L41Pn-Z1vd3s3Cc7VnZBXOy7UfZa1qPH4vn6cPTePRcaEJJLCQjrFRQNQ3QTJEGcGUlUUBhpS3TVtmSEk6pqQiR0oISc0WU0swaTiuj8VF2ucldevc1mBDFog3adJ3sjRuC4IwCBCsI_iUZxQyVnPJEnv8hP9zgk4ggqqSRQ4jKBKENpL0LwRsrlr5dSL8SEIi1f_HjX6z9i63_9HSxTZZBy8562es2_H4ihHGKxok723CtMeb3TBGqcAnxN8tJjYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912381126</pqid></control><display><type>article</type><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><source>IEEE Xplore (Online service)</source><creator>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</creator><creatorcontrib>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</creatorcontrib><description>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2009.2031230</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Barriers ; Carrier transport ; Computer simulation ; Decision support systems ; Design optimization ; Devices ; dopant-segregated structure ; Drains ; Electronics ; Exact sciences and technology ; Fabrication ; Guidelines ; Microelectronics ; Monte Carlo method ; MOSFETs ; Saturation ; Schottky barrier MOSFETs ; Schottky barriers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicides ; Thermal resistance ; Transistors ; Voltage</subject><ispartof>IEEE transactions on nanotechnology, 2010-01, Vol.9 (1), p.108-113</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</citedby><cites>FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5229361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22332633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Lang</creatorcontrib><creatorcontrib>Liu, Xiao Yan</creatorcontrib><creatorcontrib>Zhao, Yu Ning</creatorcontrib><creatorcontrib>He, Yu Hui</creatorcontrib><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Kang, Jin Feng</creatorcontrib><creatorcontrib>Han, Ru Qi</creatorcontrib><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</description><subject>Applied sciences</subject><subject>Barriers</subject><subject>Carrier transport</subject><subject>Computer simulation</subject><subject>Decision support systems</subject><subject>Design optimization</subject><subject>Devices</subject><subject>dopant-segregated structure</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Guidelines</subject><subject>Microelectronics</subject><subject>Monte Carlo method</subject><subject>MOSFETs</subject><subject>Saturation</subject><subject>Schottky barrier MOSFETs</subject><subject>Schottky barriers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicides</subject><subject>Thermal resistance</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEp9_AJYICTEF_Bk7YymfErRDisRm2Y5dAmlcbGfov8elFQMLy93p7rl3eLLsFIIrCEF1PZuMJtMrBECVCoYIg53sAFYEFgBwuptmissCIvq2nx2G8AEAZCXlB9l4lI_dYjlEGVvXyy6v49CscmfzW7eUfSxqM_dmLqNp8lq_uxg_V_mN9L41Pn-Z1vd3s3Cc7VnZBXOy7UfZa1qPH4vn6cPTePRcaEJJLCQjrFRQNQ3QTJEGcGUlUUBhpS3TVtmSEk6pqQiR0oISc0WU0swaTiuj8VF2ucldevc1mBDFog3adJ3sjRuC4IwCBCsI_iUZxQyVnPJEnv8hP9zgk4ggqqSRQ4jKBKENpL0LwRsrlr5dSL8SEIi1f_HjX6z9i63_9HSxTZZBy8562es2_H4ihHGKxok723CtMeb3TBGqcAnxN8tJjYs</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zeng, Lang</creator><creator>Liu, Xiao Yan</creator><creator>Zhao, Yu Ning</creator><creator>He, Yu Hui</creator><creator>Du, Gang</creator><creator>Kang, Jin Feng</creator><creator>Han, Ru Qi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201001</creationdate><title>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</title><author>Zeng, Lang ; Liu, Xiao Yan ; Zhao, Yu Ning ; He, Yu Hui ; Du, Gang ; Kang, Jin Feng ; Han, Ru Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Barriers</topic><topic>Carrier transport</topic><topic>Computer simulation</topic><topic>Decision support systems</topic><topic>Design optimization</topic><topic>Devices</topic><topic>dopant-segregated structure</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Guidelines</topic><topic>Microelectronics</topic><topic>Monte Carlo method</topic><topic>MOSFETs</topic><topic>Saturation</topic><topic>Schottky barrier MOSFETs</topic><topic>Schottky barriers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicides</topic><topic>Thermal resistance</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lang</creatorcontrib><creatorcontrib>Liu, Xiao Yan</creatorcontrib><creatorcontrib>Zhao, Yu Ning</creatorcontrib><creatorcontrib>He, Yu Hui</creatorcontrib><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Kang, Jin Feng</creatorcontrib><creatorcontrib>Han, Ru Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lang</au><au>Liu, Xiao Yan</au><au>Zhao, Yu Ning</au><au>He, Yu Hui</au><au>Du, Gang</au><au>Kang, Jin Feng</au><au>Han, Ru Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2010-01</date><risdate>2010</risdate><volume>9</volume><issue>1</issue><spage>108</spage><epage>113</epage><pages>108-113</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>A dopant-segregated Schottky barrier MOSFET is simulated by Monte Carlo method in this paper. The feature that dopant-segregated structure can improve on-current is revealed. The influence of dopant-segregated structure parameters on device performance is investigated, and the guideline for device design optimization is that the dopant-segregated region should overlay the whole Schottky barrier region. Some carrier transport details are also demonstrated here. The maximal velocities at source and drain sides all decrease with the increase of dopant-segregated region length. The maximal velocity at source side shows saturation with the existence of dopant-segregated structure when drain voltage increases while the maximal velocity at drain side shows no saturation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2009.2031230</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2010-01, Vol.9 (1), p.108-113
issn 1536-125X
1941-0085
language eng
recordid cdi_pascalfrancis_primary_22332633
source IEEE Xplore (Online service)
subjects Applied sciences
Barriers
Carrier transport
Computer simulation
Decision support systems
Design optimization
Devices
dopant-segregated structure
Drains
Electronics
Exact sciences and technology
Fabrication
Guidelines
Microelectronics
Monte Carlo method
MOSFETs
Saturation
Schottky barrier MOSFETs
Schottky barriers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicides
Thermal resistance
Transistors
Voltage
title A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Study%20of%20Dopant-Segregated%20Schottky%20Barrier%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Zeng,%20Lang&rft.date=2010-01&rft.volume=9&rft.issue=1&rft.spage=108&rft.epage=113&rft.pages=108-113&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2009.2031230&rft_dat=%3Cproquest_pasca%3E875021910%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-a7476b1bdd0c7b4d08bfa4b0b3bcf7cfbf654855e944aaf0638b4bbc7fe859ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912381126&rft_id=info:pmid/&rft_ieee_id=5229361&rfr_iscdi=true