Loading…

Asymptotic integration of nonlinear ϕ -Laplacian differential equations

The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2010-02, Vol.72 (3), p.2000-2008
Main Authors: Medveď, Milan, Moussaoui, Toufik
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2008
container_issue 3
container_start_page 2000
container_title Nonlinear analysis
container_volume 72
creator Medveď, Milan
Moussaoui, Toufik
description The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.
doi_str_mv 10.1016/j.na.2009.09.042
format article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22356168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X09010487</els_id><sourcerecordid>S0362546X09010487</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3</originalsourceid><addsrcrecordid>eNotUMFKxDAUDKLgunr32IvH1pekSbfelkVdoeBFwVt4TV8lSzetSRX2Q_wuf8nWFQYGhplhGMauOWQcuL7dZR4zAVBmM3JxwhZ8VchUCa5O2QKkFqnK9ds5u4hxBwC8kHrBtut42A9jPzqbOD_Se8DR9T7p28T3vnOeMCQ_30la4dChdeiTxrUtBfKjwy6hj8-_QLxkZy12ka7-ecleH-5fNtu0en582qyrlITUY8pLbkXZKJ43AIWydaFrFIqgEXaFGgiszutWKmGl0rUtAZtSqlwVRLqcxCW7OfYOGC12bUBvXTRDcHsMByPEFON6Nfnujj6axnw5CiZaR95S4wLZ0TS9MxzM_J3ZGY9m_s7MyIX8BUTGZBY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><creator>Medveď, Milan ; Moussaoui, Toufik</creator><creatorcontrib>Medveď, Milan ; Moussaoui, Toufik</creatorcontrib><description>The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.09.042</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-Laplacian ; Asymptotic behavior ; Exact sciences and technology ; Existence ; Fixed point theorems ; Mathematical analysis ; Mathematics ; Measure and integration ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2010-02, Vol.72 (3), p.2000-2008</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X09010487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,27922,27923,46001</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22356168$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Medveď, Milan</creatorcontrib><creatorcontrib>Moussaoui, Toufik</creatorcontrib><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><title>Nonlinear analysis</title><description>The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.</description><subject>[formula omitted]-Laplacian</subject><subject>Asymptotic behavior</subject><subject>Exact sciences and technology</subject><subject>Existence</subject><subject>Fixed point theorems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotUMFKxDAUDKLgunr32IvH1pekSbfelkVdoeBFwVt4TV8lSzetSRX2Q_wuf8nWFQYGhplhGMauOWQcuL7dZR4zAVBmM3JxwhZ8VchUCa5O2QKkFqnK9ds5u4hxBwC8kHrBtut42A9jPzqbOD_Se8DR9T7p28T3vnOeMCQ_30la4dChdeiTxrUtBfKjwy6hj8-_QLxkZy12ka7-ecleH-5fNtu0en582qyrlITUY8pLbkXZKJ43AIWydaFrFIqgEXaFGgiszutWKmGl0rUtAZtSqlwVRLqcxCW7OfYOGC12bUBvXTRDcHsMByPEFON6Nfnujj6axnw5CiZaR95S4wLZ0TS9MxzM_J3ZGY9m_s7MyIX8BUTGZBY</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Medveď, Milan</creator><creator>Moussaoui, Toufik</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20100201</creationdate><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><author>Medveď, Milan ; Moussaoui, Toufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-Laplacian</topic><topic>Asymptotic behavior</topic><topic>Exact sciences and technology</topic><topic>Existence</topic><topic>Fixed point theorems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medveď, Milan</creatorcontrib><creatorcontrib>Moussaoui, Toufik</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medveď, Milan</au><au>Moussaoui, Toufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>72</volume><issue>3</issue><spage>2000</spage><epage>2008</epage><pages>2000-2008</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.09.042</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2010-02, Vol.72 (3), p.2000-2008
issn 0362-546X
1873-5215
language eng
recordid cdi_pascalfrancis_primary_22356168
source ScienceDirect: Mathematics Backfile; ScienceDirect Journals
subjects [formula omitted]-Laplacian
Asymptotic behavior
Exact sciences and technology
Existence
Fixed point theorems
Mathematical analysis
Mathematics
Measure and integration
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
title Asymptotic integration of nonlinear ϕ -Laplacian differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20integration%20of%20nonlinear%20%CF%95%20-Laplacian%20differential%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Medve%C4%8F,%20Milan&rft.date=2010-02-01&rft.volume=72&rft.issue=3&rft.spage=2000&rft.epage=2008&rft.pages=2000-2008&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.09.042&rft_dat=%3Celsevier_pasca%3ES0362546X09010487%3C/elsevier_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true