Loading…
Asymptotic integration of nonlinear ϕ -Laplacian differential equations
The aim of the present paper is to study the existence of solutions to initial values problems for a ϕ -Laplace-like operator. We generalize the results of Agarwal (2007) [1, Section 4; Theorem 3] and the result of Philos (2004) [20, Theorem 5] to the ϕ -Laplacian-like problems.
Saved in:
Published in: | Nonlinear analysis 2010-02, Vol.72 (3), p.2000-2008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2008 |
container_issue | 3 |
container_start_page | 2000 |
container_title | Nonlinear analysis |
container_volume | 72 |
creator | Medveď, Milan Moussaoui, Toufik |
description | The aim of the present paper is to study the existence of solutions to initial values problems for a
ϕ
-Laplace-like operator. We generalize the results of Agarwal (2007)
[1, Section 4; Theorem 3] and the result of Philos (2004)
[20, Theorem 5] to the
ϕ
-Laplacian-like problems. |
doi_str_mv | 10.1016/j.na.2009.09.042 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22356168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X09010487</els_id><sourcerecordid>S0362546X09010487</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3</originalsourceid><addsrcrecordid>eNotUMFKxDAUDKLgunr32IvH1pekSbfelkVdoeBFwVt4TV8lSzetSRX2Q_wuf8nWFQYGhplhGMauOWQcuL7dZR4zAVBmM3JxwhZ8VchUCa5O2QKkFqnK9ds5u4hxBwC8kHrBtut42A9jPzqbOD_Se8DR9T7p28T3vnOeMCQ_30la4dChdeiTxrUtBfKjwy6hj8-_QLxkZy12ka7-ecleH-5fNtu0en582qyrlITUY8pLbkXZKJ43AIWydaFrFIqgEXaFGgiszutWKmGl0rUtAZtSqlwVRLqcxCW7OfYOGC12bUBvXTRDcHsMByPEFON6Nfnujj6axnw5CiZaR95S4wLZ0TS9MxzM_J3ZGY9m_s7MyIX8BUTGZBY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><creator>Medveď, Milan ; Moussaoui, Toufik</creator><creatorcontrib>Medveď, Milan ; Moussaoui, Toufik</creatorcontrib><description>The aim of the present paper is to study the existence of solutions to initial values problems for a
ϕ
-Laplace-like operator. We generalize the results of Agarwal (2007)
[1, Section 4; Theorem 3] and the result of Philos (2004)
[20, Theorem 5] to the
ϕ
-Laplacian-like problems.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.09.042</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-Laplacian ; Asymptotic behavior ; Exact sciences and technology ; Existence ; Fixed point theorems ; Mathematical analysis ; Mathematics ; Measure and integration ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2010-02, Vol.72 (3), p.2000-2008</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X09010487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,27922,27923,46001</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22356168$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Medveď, Milan</creatorcontrib><creatorcontrib>Moussaoui, Toufik</creatorcontrib><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><title>Nonlinear analysis</title><description>The aim of the present paper is to study the existence of solutions to initial values problems for a
ϕ
-Laplace-like operator. We generalize the results of Agarwal (2007)
[1, Section 4; Theorem 3] and the result of Philos (2004)
[20, Theorem 5] to the
ϕ
-Laplacian-like problems.</description><subject>[formula omitted]-Laplacian</subject><subject>Asymptotic behavior</subject><subject>Exact sciences and technology</subject><subject>Existence</subject><subject>Fixed point theorems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotUMFKxDAUDKLgunr32IvH1pekSbfelkVdoeBFwVt4TV8lSzetSRX2Q_wuf8nWFQYGhplhGMauOWQcuL7dZR4zAVBmM3JxwhZ8VchUCa5O2QKkFqnK9ds5u4hxBwC8kHrBtut42A9jPzqbOD_Se8DR9T7p28T3vnOeMCQ_30la4dChdeiTxrUtBfKjwy6hj8-_QLxkZy12ka7-ecleH-5fNtu0en582qyrlITUY8pLbkXZKJ43AIWydaFrFIqgEXaFGgiszutWKmGl0rUtAZtSqlwVRLqcxCW7OfYOGC12bUBvXTRDcHsMByPEFON6Nfnujj6axnw5CiZaR95S4wLZ0TS9MxzM_J3ZGY9m_s7MyIX8BUTGZBY</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Medveď, Milan</creator><creator>Moussaoui, Toufik</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20100201</creationdate><title>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</title><author>Medveď, Milan ; Moussaoui, Toufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-Laplacian</topic><topic>Asymptotic behavior</topic><topic>Exact sciences and technology</topic><topic>Existence</topic><topic>Fixed point theorems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medveď, Milan</creatorcontrib><creatorcontrib>Moussaoui, Toufik</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medveď, Milan</au><au>Moussaoui, Toufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic integration of nonlinear ϕ -Laplacian differential equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>72</volume><issue>3</issue><spage>2000</spage><epage>2008</epage><pages>2000-2008</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The aim of the present paper is to study the existence of solutions to initial values problems for a
ϕ
-Laplace-like operator. We generalize the results of Agarwal (2007)
[1, Section 4; Theorem 3] and the result of Philos (2004)
[20, Theorem 5] to the
ϕ
-Laplacian-like problems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.09.042</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2010-02, Vol.72 (3), p.2000-2008 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_pascalfrancis_primary_22356168 |
source | ScienceDirect: Mathematics Backfile; ScienceDirect Journals |
subjects | [formula omitted]-Laplacian Asymptotic behavior Exact sciences and technology Existence Fixed point theorems Mathematical analysis Mathematics Measure and integration Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use |
title | Asymptotic integration of nonlinear ϕ -Laplacian differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20integration%20of%20nonlinear%20%CF%95%20-Laplacian%20differential%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Medve%C4%8F,%20Milan&rft.date=2010-02-01&rft.volume=72&rft.issue=3&rft.spage=2000&rft.epage=2008&rft.pages=2000-2008&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.09.042&rft_dat=%3Celsevier_pasca%3ES0362546X09010487%3C/elsevier_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e236t-191c29d514d0075cb76ba25e0d2c8a60e0c64bf352c356bc90ad935457ee692c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |