Loading…
Signatures of projectile–nucleus scattering in three-dimensional (e,2e) cross sections for argon
Electron impact ionization (E0 = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emi...
Saved in:
Published in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-02, Vol.43 (3), p.035202-035202 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron impact ionization (E0 = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emitted electron up to an energy of 25 eV and a range of projectile scattering angles from -5 degree to -15 degree . Inside the projectile scattering plane the TDCS shape is in rather good agreement with a hybrid distorted-wave plus R-matrix (DWBA-RM) calculation. Outside the scattering plane relatively strong electron emission is observed which is reproduced by theory in magnitude but not in shape. A systematic study of the TDCS behaviour and structure in this region indicates that its origin lies in high-order projectile-target interaction. |
---|---|
ISSN: | 0953-4075 1361-6455 |
DOI: | 10.1088/0953-4075/43/3/035202 |