Loading…

Performance of quantum data transmission systems in the presence of thermal noise

In the literature the performance of quantum data transmission systems is usually evaluated in the absence of thermal noise. A more realistic approach taking into account the thermal noise is intrinsically more difficult because it requires dealing with Glauber coherent states in an infinite-dimensi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2010-02, Vol.58 (2), p.623-630
Main Authors: Cariolaro, G., Pierobon, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the literature the performance of quantum data transmission systems is usually evaluated in the absence of thermal noise. A more realistic approach taking into account the thermal noise is intrinsically more difficult because it requires dealing with Glauber coherent states in an infinite-dimensional space. In particular, the exact evaluation of the optimal measurement operators is a very difficult task, and numerical approximation is unavoidable. The paper faces the problem by approximating the P-representation of the noisy quantum states with a large but finite numbers of terms and applying to them the square root measurement (SRM) approach. Comparisons with cases where the exact solution are known show that the SRM approach gives quite accurate results. As application, the performance of quadrature amplitude modulation (QAM) and phase shift keying (PSK) systems is considered. In spite of the fact that the SRM approach is not optimal and overestimates the error probability, also in these cases the quantum detection maintains its superiority with respect to the classical homodyne detection.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2010.02.080013