Loading…

Uncertainty Analyses in the Finite-Difference Time-Domain Method

Providing estimates of the uncertainty in results obtained by Computational Electromagnetic (CEM) simulations is essential when determining the acceptability of the results. The Monte Carlo method (MCM) has been previously used to quantify the uncertainty in CEM simulations. Other computationally ef...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electromagnetic compatibility 2010-02, Vol.52 (1), p.155-163
Main Authors: Edwards, R.S., Marvin, A.C., Porter, S.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Providing estimates of the uncertainty in results obtained by Computational Electromagnetic (CEM) simulations is essential when determining the acceptability of the results. The Monte Carlo method (MCM) has been previously used to quantify the uncertainty in CEM simulations. Other computationally efficient methods have been investigated more recently, such as the polynomial chaos method (PCM) and the method of moments (MoM). This paper introduces a novel implementation of the PCM and the MoM into the finite-difference time -domain method. The PCM and the MoM are found to be computationally more efficient than the MCM, but can provide poorer estimates of the uncertainty in resonant electromagnetic compatibility data.
ISSN:0018-9375
1558-187X
DOI:10.1109/TEMC.2009.2034645