Loading…

On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I

Saved in:
Bibliographic Details
Published in:Mathematical and computer modelling 2010, Vol.51 (9-10), p.1107-1117
Main Authors: SARHAN, A. M, EL-SHAZLY, Naglaa M, SHEHATA, Enas M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1117
container_issue 9-10
container_start_page 1107
container_title Mathematical and computer modelling
container_volume 51
creator SARHAN, A. M
EL-SHAZLY, Naglaa M
SHEHATA, Enas M
description
format article
fullrecord <record><control><sourceid>pascalfrancis</sourceid><recordid>TN_cdi_pascalfrancis_primary_22566654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22566654</sourcerecordid><originalsourceid>FETCH-pascalfrancis_primary_225666543</originalsourceid><addsrcrecordid>eNqNy0FKw0AUxvFBLBhb7_A2XUlgkjaZZNFFEUtddeOiu_JIX-iTyUw6byr1Bm69i-foIXoSDXgAVx9_-H03Kskqk6f13NS3KtFVXaQmM-ZO3Yu8aa2LWleJko2DeCCgM0sk1xD49jdioA4t9F448jvBnlp2HAnE21Nk72Rww9F5Z9kRBugwBj4DHU84CNgGeITr51fHiwyWvL1885JhAS8TNWrRCj387VhNV8-vT-u0R2nQtgFdw7LrA3cYPnZ5XpRlWcxn_3U_w4RPzw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I</title><source>ScienceDirect Freedom Collection</source><creator>SARHAN, A. M ; EL-SHAZLY, Naglaa M ; SHEHATA, Enas M</creator><creatorcontrib>SARHAN, A. M ; EL-SHAZLY, Naglaa M ; SHEHATA, Enas M</creatorcontrib><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Algebra ; Exact sciences and technology ; Finite differences and functional equations ; Global analysis, analysis on manifolds ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Mathematical and computer modelling, 2010, Vol.51 (9-10), p.1107-1117</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22566654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SARHAN, A. M</creatorcontrib><creatorcontrib>EL-SHAZLY, Naglaa M</creatorcontrib><creatorcontrib>SHEHATA, Enas M</creatorcontrib><title>On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I</title><title>Mathematical and computer modelling</title><subject>Algebra</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Global analysis, analysis on manifolds</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNy0FKw0AUxvFBLBhb7_A2XUlgkjaZZNFFEUtddeOiu_JIX-iTyUw6byr1Bm69i-foIXoSDXgAVx9_-H03Kskqk6f13NS3KtFVXaQmM-ZO3Yu8aa2LWleJko2DeCCgM0sk1xD49jdioA4t9F448jvBnlp2HAnE21Nk72Rww9F5Z9kRBugwBj4DHU84CNgGeITr51fHiwyWvL1885JhAS8TNWrRCj387VhNV8-vT-u0R2nQtgFdw7LrA3cYPnZ5XpRlWcxn_3U_w4RPzw</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>SARHAN, A. M</creator><creator>EL-SHAZLY, Naglaa M</creator><creator>SHEHATA, Enas M</creator><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>2010</creationdate><title>On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I</title><author>SARHAN, A. M ; EL-SHAZLY, Naglaa M ; SHEHATA, Enas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pascalfrancis_primary_225666543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Global analysis, analysis on manifolds</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SARHAN, A. M</creatorcontrib><creatorcontrib>EL-SHAZLY, Naglaa M</creatorcontrib><creatorcontrib>SHEHATA, Enas M</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SARHAN, A. M</au><au>EL-SHAZLY, Naglaa M</au><au>SHEHATA, Enas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2010</date><risdate>2010</risdate><volume>51</volume><issue>9-10</issue><spage>1107</spage><epage>1117</epage><pages>1107-1117</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><cop>Kidlington</cop><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 0895-7177
ispartof Mathematical and computer modelling, 2010, Vol.51 (9-10), p.1107-1117
issn 0895-7177
1872-9479
language eng
recordid cdi_pascalfrancis_primary_22566654
source ScienceDirect Freedom Collection
subjects Algebra
Exact sciences and technology
Finite differences and functional equations
Global analysis, analysis on manifolds
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title On the existence of extremal positive definite solutions of the nonlinear matrix equation Xr + ∑mi=1 AiXδiAi = I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20existence%20of%20extremal%20positive%20definite%20solutions%20of%20the%20nonlinear%20matrix%20equation%20Xr%20+%20%E2%88%91mi=1%20AiX%CE%B4iAi%20=%20I&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=SARHAN,%20A.%20M&rft.date=2010&rft.volume=51&rft.issue=9-10&rft.spage=1107&rft.epage=1117&rft.pages=1107-1117&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/&rft_dat=%3Cpascalfrancis%3E22566654%3C/pascalfrancis%3E%3Cgrp_id%3Ecdi_FETCH-pascalfrancis_primary_225666543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true