Loading…

Silicon-based micromembranes with piezoelectric actuation and piezoresistive detection for sensing purposes in liquid media

In this paper, the authors report for the first time the physical cointegration of piezoelectric actuation and piezoresistive detection on resonating micromembranes dedicated to microgravimetric biosensing applications. The micromembranes are oscillated by a reverse piezoelectric phenomenon provided...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2010-07, Vol.20 (7), p.075014-075014
Main Authors: Alava, T, Mathieu, F, Mazenq, L, Soyer, C, Remiens, D, Nicu, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the authors report for the first time the physical cointegration of piezoelectric actuation and piezoresistive detection on resonating micromembranes dedicated to microgravimetric biosensing applications. The micromembranes are oscillated by a reverse piezoelectric phenomenon provided by a PbZrxTi1-xO3 46/54 thin layer. The oscillation amplitudes are read-out by measuring the resistance change of piezoresistors precisely located on the clamped edges of each micromembrane. The detection of the micromembranes' resonant frequencies is reported in air and deionized water. A dedicated electronic set-up operating the micromembranes in a closed-loop configuration is described. The set-up enables multiplexed tracking of four micromembranes' resonant frequencies in liquid media while enhancing the corresponding quality factors' values. Increases up to 11-fold of the micromembranes' quality factors in liquid is reported for the (0,1) vibration mode. A quality factor of up to 417 is reported in fluid.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/20/7/075014