Loading…
Topological Identification in Networks of Dynamical Systems
The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to...
Saved in:
Published in: | IEEE transactions on automatic control 2010-08, Vol.55 (8), p.1860-1871 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483 |
container_end_page | 1871 |
container_issue | 8 |
container_start_page | 1860 |
container_title | IEEE transactions on automatic control |
container_volume | 55 |
creator | Materassi, D Innocenti, G |
description | The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated. |
doi_str_mv | 10.1109/TAC.2010.2042347 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23090426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5406168</ieee_id><sourcerecordid>787234444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</originalsourceid><addsrcrecordid>eNpdkE1LAzEQQIMoWKt3wcuCiKetk2Q3yeKp1K9C0YP1HLLZRFK3m5pskf57U1t6MJfJMG-GmYfQJYYRxlDdzceTEYGUESgILfgRGuCyFDkpCT1GAwAs8ooIdorOYlyklBUFHqD7uV_51n86rdps2piudzb9e-e7zHXZq-l_fPiKmbfZw6ZTyz_ufRN7s4zn6MSqNpqLfRyij6fH-eQln709TyfjWa5pSfucCkYbCkwbxrFQtaENrw0wC7VuGkwFaCWUJYWuK0tITdI9TQM1qzi3qhB0iG53c1fBf69N7OXSRW3aVnXGr6PkgqeL00vk9T9y4dehS8tJDIRzXjFRJgp2lA4-xmCsXAW3VGGTILmVKZNMuZUp9zJTy81-sIrJgA2q0y4e-giFKpEscVc7zhljDuWyAIaZoL8H9nvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027779685</pqid></control><display><type>article</type><title>Topological Identification in Networks of Dynamical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Materassi, D ; Innocenti, G</creator><creatorcontrib>Materassi, D ; Innocenti, G</creatorcontrib><description>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2042347</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Arithmetic ; Biological system modeling ; Complex networks ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Dynamical systems ; Exact sciences and technology ; Frequency ; Graph theory ; High frequencies ; Inference from stochastic processes; time series analysis ; Linear systems ; Mathematical analysis ; Mathematics ; Network topology ; Networks ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Probability and statistics ; Raw materials ; Sciences and techniques of general use ; Software ; Statistics ; Stock markets ; Time series ; Time series analysis ; Trees ; Unweighted pair group method with arithmetic mean (UPGMA)</subject><ispartof>IEEE transactions on automatic control, 2010-08, Vol.55 (8), p.1860-1871</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</citedby><cites>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5406168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23090426$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Materassi, D</creatorcontrib><creatorcontrib>Innocenti, G</creatorcontrib><title>Topological Identification in Networks of Dynamical Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Arithmetic</subject><subject>Biological system modeling</subject><subject>Complex networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Graph theory</subject><subject>High frequencies</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Network topology</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Probability and statistics</subject><subject>Raw materials</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><subject>Stock markets</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Trees</subject><subject>Unweighted pair group method with arithmetic mean (UPGMA)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQQIMoWKt3wcuCiKetk2Q3yeKp1K9C0YP1HLLZRFK3m5pskf57U1t6MJfJMG-GmYfQJYYRxlDdzceTEYGUESgILfgRGuCyFDkpCT1GAwAs8ooIdorOYlyklBUFHqD7uV_51n86rdps2piudzb9e-e7zHXZq-l_fPiKmbfZw6ZTyz_ufRN7s4zn6MSqNpqLfRyij6fH-eQln709TyfjWa5pSfucCkYbCkwbxrFQtaENrw0wC7VuGkwFaCWUJYWuK0tITdI9TQM1qzi3qhB0iG53c1fBf69N7OXSRW3aVnXGr6PkgqeL00vk9T9y4dehS8tJDIRzXjFRJgp2lA4-xmCsXAW3VGGTILmVKZNMuZUp9zJTy81-sIrJgA2q0y4e-giFKpEscVc7zhljDuWyAIaZoL8H9nvk</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Materassi, D</creator><creator>Innocenti, G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100801</creationdate><title>Topological Identification in Networks of Dynamical Systems</title><author>Materassi, D ; Innocenti, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Arithmetic</topic><topic>Biological system modeling</topic><topic>Complex networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Graph theory</topic><topic>High frequencies</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Network topology</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Probability and statistics</topic><topic>Raw materials</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><topic>Stock markets</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Trees</topic><topic>Unweighted pair group method with arithmetic mean (UPGMA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Materassi, D</creatorcontrib><creatorcontrib>Innocenti, G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Materassi, D</au><au>Innocenti, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Identification in Networks of Dynamical Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>55</volume><issue>8</issue><spage>1860</spage><epage>1871</epage><pages>1860-1871</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2042347</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2010-08, Vol.55 (8), p.1860-1871 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_23090426 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Approximation Arithmetic Biological system modeling Complex networks Computer science control theory systems Computer systems and distributed systems. User interface Dynamical systems Exact sciences and technology Frequency Graph theory High frequencies Inference from stochastic processes time series analysis Linear systems Mathematical analysis Mathematics Network topology Networks Neural networks Operational research and scientific management Operational research. Management science Portfolio theory Probability and statistics Raw materials Sciences and techniques of general use Software Statistics Stock markets Time series Time series analysis Trees Unweighted pair group method with arithmetic mean (UPGMA) |
title | Topological Identification in Networks of Dynamical Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Identification%20in%20Networks%20of%20Dynamical%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Materassi,%20D&rft.date=2010-08-01&rft.volume=55&rft.issue=8&rft.spage=1860&rft.epage=1871&rft.pages=1860-1871&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2042347&rft_dat=%3Cproquest_pasca%3E787234444%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027779685&rft_id=info:pmid/&rft_ieee_id=5406168&rfr_iscdi=true |