Loading…

Topological Identification in Networks of Dynamical Systems

The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2010-08, Vol.55 (8), p.1860-1871
Main Authors: Materassi, D, Innocenti, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483
cites cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483
container_end_page 1871
container_issue 8
container_start_page 1860
container_title IEEE transactions on automatic control
container_volume 55
creator Materassi, D
Innocenti, G
description The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.
doi_str_mv 10.1109/TAC.2010.2042347
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23090426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5406168</ieee_id><sourcerecordid>787234444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</originalsourceid><addsrcrecordid>eNpdkE1LAzEQQIMoWKt3wcuCiKetk2Q3yeKp1K9C0YP1HLLZRFK3m5pskf57U1t6MJfJMG-GmYfQJYYRxlDdzceTEYGUESgILfgRGuCyFDkpCT1GAwAs8ooIdorOYlyklBUFHqD7uV_51n86rdps2piudzb9e-e7zHXZq-l_fPiKmbfZw6ZTyz_ufRN7s4zn6MSqNpqLfRyij6fH-eQln709TyfjWa5pSfucCkYbCkwbxrFQtaENrw0wC7VuGkwFaCWUJYWuK0tITdI9TQM1qzi3qhB0iG53c1fBf69N7OXSRW3aVnXGr6PkgqeL00vk9T9y4dehS8tJDIRzXjFRJgp2lA4-xmCsXAW3VGGTILmVKZNMuZUp9zJTy81-sIrJgA2q0y4e-giFKpEscVc7zhljDuWyAIaZoL8H9nvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027779685</pqid></control><display><type>article</type><title>Topological Identification in Networks of Dynamical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Materassi, D ; Innocenti, G</creator><creatorcontrib>Materassi, D ; Innocenti, G</creatorcontrib><description>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2042347</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Arithmetic ; Biological system modeling ; Complex networks ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Dynamical systems ; Exact sciences and technology ; Frequency ; Graph theory ; High frequencies ; Inference from stochastic processes; time series analysis ; Linear systems ; Mathematical analysis ; Mathematics ; Network topology ; Networks ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Probability and statistics ; Raw materials ; Sciences and techniques of general use ; Software ; Statistics ; Stock markets ; Time series ; Time series analysis ; Trees ; Unweighted pair group method with arithmetic mean (UPGMA)</subject><ispartof>IEEE transactions on automatic control, 2010-08, Vol.55 (8), p.1860-1871</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</citedby><cites>FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5406168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23090426$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Materassi, D</creatorcontrib><creatorcontrib>Innocenti, G</creatorcontrib><title>Topological Identification in Networks of Dynamical Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Arithmetic</subject><subject>Biological system modeling</subject><subject>Complex networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Graph theory</subject><subject>High frequencies</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Network topology</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Probability and statistics</subject><subject>Raw materials</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><subject>Stock markets</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Trees</subject><subject>Unweighted pair group method with arithmetic mean (UPGMA)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQQIMoWKt3wcuCiKetk2Q3yeKp1K9C0YP1HLLZRFK3m5pskf57U1t6MJfJMG-GmYfQJYYRxlDdzceTEYGUESgILfgRGuCyFDkpCT1GAwAs8ooIdorOYlyklBUFHqD7uV_51n86rdps2piudzb9e-e7zHXZq-l_fPiKmbfZw6ZTyz_ufRN7s4zn6MSqNpqLfRyij6fH-eQln709TyfjWa5pSfucCkYbCkwbxrFQtaENrw0wC7VuGkwFaCWUJYWuK0tITdI9TQM1qzi3qhB0iG53c1fBf69N7OXSRW3aVnXGr6PkgqeL00vk9T9y4dehS8tJDIRzXjFRJgp2lA4-xmCsXAW3VGGTILmVKZNMuZUp9zJTy81-sIrJgA2q0y4e-giFKpEscVc7zhljDuWyAIaZoL8H9nvk</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Materassi, D</creator><creator>Innocenti, G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100801</creationdate><title>Topological Identification in Networks of Dynamical Systems</title><author>Materassi, D ; Innocenti, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Arithmetic</topic><topic>Biological system modeling</topic><topic>Complex networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Graph theory</topic><topic>High frequencies</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Network topology</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Probability and statistics</topic><topic>Raw materials</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><topic>Stock markets</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Trees</topic><topic>Unweighted pair group method with arithmetic mean (UPGMA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Materassi, D</creatorcontrib><creatorcontrib>Innocenti, G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Materassi, D</au><au>Innocenti, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Identification in Networks of Dynamical Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>55</volume><issue>8</issue><spage>1860</spage><epage>1871</epage><pages>1860-1871</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The paper deals with the problem of reconstructing the tree-like topological structure of a network of linear dynamical systems. A distance function is defined in order to evaluate the "closeness" of two processes and some useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure for networked linear systems characterized by a tree topology are provided as well. The paper also suggests the approximation of a complex connected network with a tree in order to detect the most meaningful interconnections. The application of the techniques to the analysis of an actual complex network, i.e., to high frequency time series of the stock market, is extensively illustrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2042347</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2010-08, Vol.55 (8), p.1860-1871
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_23090426
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation
Arithmetic
Biological system modeling
Complex networks
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Dynamical systems
Exact sciences and technology
Frequency
Graph theory
High frequencies
Inference from stochastic processes
time series analysis
Linear systems
Mathematical analysis
Mathematics
Network topology
Networks
Neural networks
Operational research and scientific management
Operational research. Management science
Portfolio theory
Probability and statistics
Raw materials
Sciences and techniques of general use
Software
Statistics
Stock markets
Time series
Time series analysis
Trees
Unweighted pair group method with arithmetic mean (UPGMA)
title Topological Identification in Networks of Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Identification%20in%20Networks%20of%20Dynamical%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Materassi,%20D&rft.date=2010-08-01&rft.volume=55&rft.issue=8&rft.spage=1860&rft.epage=1871&rft.pages=1860-1871&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2042347&rft_dat=%3Cproquest_pasca%3E787234444%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3863d306ce6718abe3d7be06f0bcdd1380ca8af24cb9f22b2110dd0b6977fa483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027779685&rft_id=info:pmid/&rft_ieee_id=5406168&rfr_iscdi=true