Loading…
A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control
A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper a...
Saved in:
Published in: | IEEE transactions on energy conversion 1998-06, Vol.13 (2), p.176-182 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733 |
container_end_page | 182 |
container_issue | 2 |
container_start_page | 176 |
container_title | IEEE transactions on energy conversion |
container_volume | 13 |
creator | Prasad, G. Swidenbank, E. Hogg, B.W. |
description | A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions. |
doi_str_mv | 10.1109/60.678982 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2322264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>678982</ieee_id><sourcerecordid>308220840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1GTyaLIsxRcU3Oh6SGbu1EjmYZJR-u-NtLq4nMX5zuFyELqkZEEp0XeSLORSaVUeoRkVQhWECH2MZkQpUSgt9Sk6i_GDEMpFSWcorXAPUzA-S8Ld0IAvrInQ4G7yyX2Z4Iz1gP3Qb4tg-i3gMUDj6uwBroc-hcHjmIJJsN1hM47e5bDrcXqH0OXecfiGgEdv-vTHn6OT1vgIFwedo7eH-9f1U7F5eXxerzZFzYhMhWqFpNDYxlhJqcpnJWNLZqi2AJaA1ZwSC5IvDWs551ooTrQRjFmaOTZHN_veMQyfE8RUdS7W4PMvMEyxKqVcciHLDN7uwToMMQZoqzG4zoRdRUn1u2slSbXfNbPXh1ITa-PbPErt4n-gZGVZSp6xqz3mAODfPXT8ALltgQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26674562</pqid></control><display><type>article</type><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</creator><creatorcontrib>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</creatorcontrib><description>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/60.678982</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Boilers ; Computer simulation ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Error correction ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy ; Installations for industrial steam generation ; Neural networks ; Oil fired boilers ; Power generation ; Power system modeling ; Prediction algorithms ; Predictive control ; Predictive control systems ; Predictive models ; Pressure control ; Temperature control</subject><ispartof>IEEE transactions on energy conversion, 1998-06, Vol.13 (2), p.176-182</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</citedby><cites>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/678982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2322264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Swidenbank, E.</creatorcontrib><creatorcontrib>Hogg, B.W.</creatorcontrib><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boilers</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Installations for industrial steam generation</subject><subject>Neural networks</subject><subject>Oil fired boilers</subject><subject>Power generation</subject><subject>Power system modeling</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Predictive control systems</subject><subject>Predictive models</subject><subject>Pressure control</subject><subject>Temperature control</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1GTyaLIsxRcU3Oh6SGbu1EjmYZJR-u-NtLq4nMX5zuFyELqkZEEp0XeSLORSaVUeoRkVQhWECH2MZkQpUSgt9Sk6i_GDEMpFSWcorXAPUzA-S8Ld0IAvrInQ4G7yyX2Z4Iz1gP3Qb4tg-i3gMUDj6uwBroc-hcHjmIJJsN1hM47e5bDrcXqH0OXecfiGgEdv-vTHn6OT1vgIFwedo7eH-9f1U7F5eXxerzZFzYhMhWqFpNDYxlhJqcpnJWNLZqi2AJaA1ZwSC5IvDWs551ooTrQRjFmaOTZHN_veMQyfE8RUdS7W4PMvMEyxKqVcciHLDN7uwToMMQZoqzG4zoRdRUn1u2slSbXfNbPXh1ITa-PbPErt4n-gZGVZSp6xqz3mAODfPXT8ALltgQM</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Prasad, G.</creator><creator>Swidenbank, E.</creator><creator>Hogg, B.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19980601</creationdate><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><author>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boilers</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Installations for industrial steam generation</topic><topic>Neural networks</topic><topic>Oil fired boilers</topic><topic>Power generation</topic><topic>Power system modeling</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Predictive control systems</topic><topic>Predictive models</topic><topic>Pressure control</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Swidenbank, E.</creatorcontrib><creatorcontrib>Hogg, B.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, G.</au><au>Swidenbank, E.</au><au>Hogg, B.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>1998-06-01</date><risdate>1998</risdate><volume>13</volume><issue>2</issue><spage>176</spage><epage>182</epage><pages>176-182</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/60.678982</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 1998-06, Vol.13 (2), p.176-182 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_pascalfrancis_primary_2322264 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Algorithms Applied sciences Boilers Computer simulation Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Error correction Exact sciences and technology Installations for energy generation and conversion: thermal and electrical energy Installations for industrial steam generation Neural networks Oil fired boilers Power generation Power system modeling Prediction algorithms Predictive control Predictive control systems Predictive models Pressure control Temperature control |
title | A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20net%20model-based%20multivariable%20long-range%20predictive%20control%20strategy%20applied%20in%20thermal%20power%20plant%20control&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Prasad,%20G.&rft.date=1998-06-01&rft.volume=13&rft.issue=2&rft.spage=176&rft.epage=182&rft.pages=176-182&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/60.678982&rft_dat=%3Cproquest_pasca%3E308220840%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26674562&rft_id=info:pmid/&rft_ieee_id=678982&rfr_iscdi=true |