Loading…

A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control

A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion 1998-06, Vol.13 (2), p.176-182
Main Authors: Prasad, G., Swidenbank, E., Hogg, B.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733
cites cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733
container_end_page 182
container_issue 2
container_start_page 176
container_title IEEE transactions on energy conversion
container_volume 13
creator Prasad, G.
Swidenbank, E.
Hogg, B.W.
description A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.
doi_str_mv 10.1109/60.678982
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2322264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>678982</ieee_id><sourcerecordid>308220840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1GTyaLIsxRcU3Oh6SGbu1EjmYZJR-u-NtLq4nMX5zuFyELqkZEEp0XeSLORSaVUeoRkVQhWECH2MZkQpUSgt9Sk6i_GDEMpFSWcorXAPUzA-S8Ld0IAvrInQ4G7yyX2Z4Iz1gP3Qb4tg-i3gMUDj6uwBroc-hcHjmIJJsN1hM47e5bDrcXqH0OXecfiGgEdv-vTHn6OT1vgIFwedo7eH-9f1U7F5eXxerzZFzYhMhWqFpNDYxlhJqcpnJWNLZqi2AJaA1ZwSC5IvDWs551ooTrQRjFmaOTZHN_veMQyfE8RUdS7W4PMvMEyxKqVcciHLDN7uwToMMQZoqzG4zoRdRUn1u2slSbXfNbPXh1ITa-PbPErt4n-gZGVZSp6xqz3mAODfPXT8ALltgQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26674562</pqid></control><display><type>article</type><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</creator><creatorcontrib>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</creatorcontrib><description>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/60.678982</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Boilers ; Computer simulation ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Error correction ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy ; Installations for industrial steam generation ; Neural networks ; Oil fired boilers ; Power generation ; Power system modeling ; Prediction algorithms ; Predictive control ; Predictive control systems ; Predictive models ; Pressure control ; Temperature control</subject><ispartof>IEEE transactions on energy conversion, 1998-06, Vol.13 (2), p.176-182</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</citedby><cites>FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/678982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2322264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Swidenbank, E.</creatorcontrib><creatorcontrib>Hogg, B.W.</creatorcontrib><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boilers</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Installations for industrial steam generation</subject><subject>Neural networks</subject><subject>Oil fired boilers</subject><subject>Power generation</subject><subject>Power system modeling</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Predictive control systems</subject><subject>Predictive models</subject><subject>Pressure control</subject><subject>Temperature control</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1GTyaLIsxRcU3Oh6SGbu1EjmYZJR-u-NtLq4nMX5zuFyELqkZEEp0XeSLORSaVUeoRkVQhWECH2MZkQpUSgt9Sk6i_GDEMpFSWcorXAPUzA-S8Ld0IAvrInQ4G7yyX2Z4Iz1gP3Qb4tg-i3gMUDj6uwBroc-hcHjmIJJsN1hM47e5bDrcXqH0OXecfiGgEdv-vTHn6OT1vgIFwedo7eH-9f1U7F5eXxerzZFzYhMhWqFpNDYxlhJqcpnJWNLZqi2AJaA1ZwSC5IvDWs551ooTrQRjFmaOTZHN_veMQyfE8RUdS7W4PMvMEyxKqVcciHLDN7uwToMMQZoqzG4zoRdRUn1u2slSbXfNbPXh1ITa-PbPErt4n-gZGVZSp6xqz3mAODfPXT8ALltgQM</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Prasad, G.</creator><creator>Swidenbank, E.</creator><creator>Hogg, B.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19980601</creationdate><title>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</title><author>Prasad, G. ; Swidenbank, E. ; Hogg, B.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boilers</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Installations for industrial steam generation</topic><topic>Neural networks</topic><topic>Oil fired boilers</topic><topic>Power generation</topic><topic>Power system modeling</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Predictive control systems</topic><topic>Predictive models</topic><topic>Pressure control</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Swidenbank, E.</creatorcontrib><creatorcontrib>Hogg, B.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, G.</au><au>Swidenbank, E.</au><au>Hogg, B.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>1998-06-01</date><risdate>1998</risdate><volume>13</volume><issue>2</issue><spage>176</spage><epage>182</epage><pages>176-182</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>A constrained multivariable control strategy along with its application in more efficient thermal power plant control is presented in this paper. A neural network model-based nonlinear long-range predictive control algorithm is derived, which provides offset-free closed-loop behavior with a proper and consistent treatment of modeling errors and other disturbances. A multivariable controller is designed and implemented using this algorithm. The system constraints are taken into account by including them in the control algorithm using real-time optimization. By running a simulation of a 200 MW oil-fired drum-boiler thermal power plant over a load-profile along with suitable PRBS signals superimposed on controls, the operating data is generated. Neural network (NN) modeling techniques have been used for identifying global dynamic models (NNARX models) of the plant variables off-line from the data. To demonstrate the superiority of the strategy in a MIMO case, the controller has been used in the simulation to control main steam pressure and temperature, and reheat steam temperature during load-cycling and other severe plant operating conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/60.678982</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 1998-06, Vol.13 (2), p.176-182
issn 0885-8969
1558-0059
language eng
recordid cdi_pascalfrancis_primary_2322264
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Applied sciences
Boilers
Computer simulation
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Error correction
Exact sciences and technology
Installations for energy generation and conversion: thermal and electrical energy
Installations for industrial steam generation
Neural networks
Oil fired boilers
Power generation
Power system modeling
Prediction algorithms
Predictive control
Predictive control systems
Predictive models
Pressure control
Temperature control
title A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20net%20model-based%20multivariable%20long-range%20predictive%20control%20strategy%20applied%20in%20thermal%20power%20plant%20control&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Prasad,%20G.&rft.date=1998-06-01&rft.volume=13&rft.issue=2&rft.spage=176&rft.epage=182&rft.pages=176-182&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/60.678982&rft_dat=%3Cproquest_pasca%3E308220840%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-8f561edbdab6118611b63373a19beeb0eb9410be647a3f444958409a533b13733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26674562&rft_id=info:pmid/&rft_ieee_id=678982&rfr_iscdi=true