Loading…
Synthesis of Nanosized Ce3+,Eu3+-Codoped YAG Phosphor in a Continuous Supercritical Water System
Luminescent yttrium aluminum garnet (Y3Al5O12) nanoparticles codoped with Ce3+ and Eu3+ (YAG:Ce3+,Eu3+) were continuously synthesized by directly feeding potassium hydroxide solution and a metal salt solution to supercritical water (SCW). The effects of the Ce3+-to-Eu3+ concentration ratio on the ph...
Saved in:
Published in: | Industrial & engineering chemistry research 2008-08, Vol.47 (16), p.5994-6000 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Luminescent yttrium aluminum garnet (Y3Al5O12) nanoparticles codoped with Ce3+ and Eu3+ (YAG:Ce3+,Eu3+) were continuously synthesized by directly feeding potassium hydroxide solution and a metal salt solution to supercritical water (SCW). The effects of the Ce3+-to-Eu3+ concentration ratio on the photoluminescence of the synthesized nanoparticles were studied using a continuous SCW tubular reactor. At 20-s reaction time and a pH of 9.10 in the SCW reactor, the average size of the prepared phosphor nanoparticles was 60−150 nm and cubic or hexagonal particles coexisted with the spherical particles. The phosphor nanoparticles presented a broad emission band in the green-yellow spectral region due to Ce3+, as well as a sharp emission peak at around 610 nm in the red spectral region due to Eu3+. Without further thermal treatment, the YAG:Ce3+,Eu3+ phosphor synthesized in the continuous reactor under SCW conditions showed strong luminescence properties. Simultaneously, enhancement of the red spectral emission intensity in the YAG:Ce3+,Eu3+ phosphor could be controlled by increasing the Eu3+ concentration. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie800421w |