Loading…
Active Categorical Perception of Object Shapes in a Simulated Anthropomorphic Robotic Arm
Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a process whereby the brain constructs an internal representation of the world. The operational principles of active perception can be effectively tested...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2010-12, Vol.14 (6), p.885-899 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a process whereby the brain constructs an internal representation of the world. The operational principles of active perception can be effectively tested by building robot-based models in which the relationship between perceptual categories and the body-environment interactions can be experimentally manipulated. In this paper, we study the mechanisms of tactile perception in a task in which a neuro-controlled anthropomorphic robotic arm, equipped with coarse-grained tactile sensors, is required to perceptually categorize spherical and ellipsoid objects. We show that best individuals, synthesized by artificial evolution techniques, develop a close to optimal ability to discriminate the shape of the objects as well as an ability to generalize their skill in new circumstances. The results show that the agents solve the categorization task in an effective and robust way by self-selecting the required information through action and by integrating experienced sensory-motor states over time. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/TEVC.2010.2046174 |