Loading…
Approximate Kernel Orthogonalization for Antenna Array Processing
We present a method for kernel antenna array processing using Gaussian kernels as basis functions. The method first identifies the data clusters by using a modified sparse greedy matrix approximation. Then, the algorithm performs model reduction in order to try to reduce the final size of the beamfo...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2010-12, Vol.58 (12), p.3942-3950 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a method for kernel antenna array processing using Gaussian kernels as basis functions. The method first identifies the data clusters by using a modified sparse greedy matrix approximation. Then, the algorithm performs model reduction in order to try to reduce the final size of the beamformer. The method is tested with simulations that include two arrays made of two and seven printed half wavelength thick dipoles, in scenarios with 4 and 5 users coming from different angles of arrival. The antenna parameters are simulated for all DOAs, and include the dipole radiation pattern and the mutual coupling effects of the array. The method is compared with other state-of-the-art nonlinear processing methods, to show that the presented algorithm has near optimal capabilities together with a low computational burden. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2010.2078458 |