Loading…
Direct Nucleophilic SN1-Type Reactions of Alcohols
In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the development of green chemistry and green engineering in the pharmaceutical industry. The Roundtable has established a list of key research area...
Saved in:
Published in: | European Journal of Organic Chemistry 2011-02, Vol.2011 (4), p.647-666 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 666 |
container_issue | 4 |
container_start_page | 647 |
container_title | European Journal of Organic Chemistry |
container_volume | 2011 |
creator | Emer, Enrico Sinisi, Riccardo Capdevila, Montse Guiteras Petruzziello, Diego De Vincentiis, Francesco Cozzi, Pier Giorgio |
description | In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the development of green chemistry and green engineering in the pharmaceutical industry. The Roundtable has established a list of key research areas including the direct nucleophilic reactions of alcohols. The substitution of activated alcohols is a frequently used approach for the preparation of active pharmaceutical ingredients. Alcohols are transformed into the reactive halides or sulfonate esters, thereby allowing their reaction with nucleophiles. Although the direct nucleophilic substitution of an alcohol should be an attractive process, as one of the byproducts from the reaction yields water, hydroxide is a poor leaving group that hinders the reaction. Recently, the direct substitution of allylic, benzylic, and tertiary alcohols has been achieved through an SN1 reaction with catalytic amounts of Brønsted or Lewis acids. In this review, the approaches leading to a greener process are examined in detail, and the advances achieved to date in this important transformation are presented.
In the cool of the pool! A catalytic amount of Brønsted and Lewis acids can be used in the direct nucleophilic SN1‐type reactions of alcohols with various nucleophiles. Water is the byproduct of this useful reaction. |
doi_str_mv | 10.1002/ejoc.201001474 |
format | article |
fullrecord | <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23794448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_2GJ8XB5R_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2544-f64555617f7cc304fa14cdfdbf515c2078639d19b412a1600bc652cebcae07703</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYhePe_F4-L0mx4RASUEEsTIremWNhQru9lilH_vEsye5p3M-8zhQegeQw8DkEe3K22PQJMxk-wCdTAolYNQcNlkRlmOFV1fo5uUdgCghMAdRJ5D7ewhm3_b6MpqG2Kw2dsc56tj5bKlM_YQyn3KSp8Noi23ZUy36MqbmNzd_-yi9_FoNXzJZ4vJ63AwywPhjOVeMM65wNJLaykwbzCzG78pPMfcEpB9QdUGq4JhYrAAKKzgxLrCGgdSAu2ih_PfyiRroq_N3oakqzp8mfqoCZWKMdZveurc-wnRHds7Bn3Sok9adKtFj6aLYbs1bH5mQzq435Y19acWkkquP-YTTSbT_vqJL_WY_gHfYWY0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Nucleophilic SN1-Type Reactions of Alcohols</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Emer, Enrico ; Sinisi, Riccardo ; Capdevila, Montse Guiteras ; Petruzziello, Diego ; De Vincentiis, Francesco ; Cozzi, Pier Giorgio</creator><creatorcontrib>Emer, Enrico ; Sinisi, Riccardo ; Capdevila, Montse Guiteras ; Petruzziello, Diego ; De Vincentiis, Francesco ; Cozzi, Pier Giorgio</creatorcontrib><description>In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the development of green chemistry and green engineering in the pharmaceutical industry. The Roundtable has established a list of key research areas including the direct nucleophilic reactions of alcohols. The substitution of activated alcohols is a frequently used approach for the preparation of active pharmaceutical ingredients. Alcohols are transformed into the reactive halides or sulfonate esters, thereby allowing their reaction with nucleophiles. Although the direct nucleophilic substitution of an alcohol should be an attractive process, as one of the byproducts from the reaction yields water, hydroxide is a poor leaving group that hinders the reaction. Recently, the direct substitution of allylic, benzylic, and tertiary alcohols has been achieved through an SN1 reaction with catalytic amounts of Brønsted or Lewis acids. In this review, the approaches leading to a greener process are examined in detail, and the advances achieved to date in this important transformation are presented.
In the cool of the pool! A catalytic amount of Brønsted and Lewis acids can be used in the direct nucleophilic SN1‐type reactions of alcohols with various nucleophiles. Water is the byproduct of this useful reaction.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.201001474</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alcohols ; Brønsted acids ; Chemistry ; Exact sciences and technology ; Green chemistry ; Kinetics and mechanisms ; Lewis acids ; Nucleophilic substitution ; Organic chemistry ; Reactivity and mechanisms</subject><ispartof>European Journal of Organic Chemistry, 2011-02, Vol.2011 (4), p.647-666</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23794448$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Emer, Enrico</creatorcontrib><creatorcontrib>Sinisi, Riccardo</creatorcontrib><creatorcontrib>Capdevila, Montse Guiteras</creatorcontrib><creatorcontrib>Petruzziello, Diego</creatorcontrib><creatorcontrib>De Vincentiis, Francesco</creatorcontrib><creatorcontrib>Cozzi, Pier Giorgio</creatorcontrib><title>Direct Nucleophilic SN1-Type Reactions of Alcohols</title><title>European Journal of Organic Chemistry</title><addtitle>Eur. J. Org. Chem</addtitle><description>In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the development of green chemistry and green engineering in the pharmaceutical industry. The Roundtable has established a list of key research areas including the direct nucleophilic reactions of alcohols. The substitution of activated alcohols is a frequently used approach for the preparation of active pharmaceutical ingredients. Alcohols are transformed into the reactive halides or sulfonate esters, thereby allowing their reaction with nucleophiles. Although the direct nucleophilic substitution of an alcohol should be an attractive process, as one of the byproducts from the reaction yields water, hydroxide is a poor leaving group that hinders the reaction. Recently, the direct substitution of allylic, benzylic, and tertiary alcohols has been achieved through an SN1 reaction with catalytic amounts of Brønsted or Lewis acids. In this review, the approaches leading to a greener process are examined in detail, and the advances achieved to date in this important transformation are presented.
In the cool of the pool! A catalytic amount of Brønsted and Lewis acids can be used in the direct nucleophilic SN1‐type reactions of alcohols with various nucleophiles. Water is the byproduct of this useful reaction.</description><subject>Alcohols</subject><subject>Brønsted acids</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Green chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Lewis acids</subject><subject>Nucleophilic substitution</subject><subject>Organic chemistry</subject><subject>Reactivity and mechanisms</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYhePe_F4-L0mx4RASUEEsTIremWNhQru9lilH_vEsye5p3M-8zhQegeQw8DkEe3K22PQJMxk-wCdTAolYNQcNlkRlmOFV1fo5uUdgCghMAdRJ5D7ewhm3_b6MpqG2Kw2dsc56tj5bKlM_YQyn3KSp8Noi23ZUy36MqbmNzd_-yi9_FoNXzJZ4vJ63AwywPhjOVeMM65wNJLaykwbzCzG78pPMfcEpB9QdUGq4JhYrAAKKzgxLrCGgdSAu2ih_PfyiRroq_N3oakqzp8mfqoCZWKMdZveurc-wnRHds7Bn3Sok9adKtFj6aLYbs1bH5mQzq435Y19acWkkquP-YTTSbT_vqJL_WY_gHfYWY0</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Emer, Enrico</creator><creator>Sinisi, Riccardo</creator><creator>Capdevila, Montse Guiteras</creator><creator>Petruzziello, Diego</creator><creator>De Vincentiis, Francesco</creator><creator>Cozzi, Pier Giorgio</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>201102</creationdate><title>Direct Nucleophilic SN1-Type Reactions of Alcohols</title><author>Emer, Enrico ; Sinisi, Riccardo ; Capdevila, Montse Guiteras ; Petruzziello, Diego ; De Vincentiis, Francesco ; Cozzi, Pier Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2544-f64555617f7cc304fa14cdfdbf515c2078639d19b412a1600bc652cebcae07703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohols</topic><topic>Brønsted acids</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Green chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Lewis acids</topic><topic>Nucleophilic substitution</topic><topic>Organic chemistry</topic><topic>Reactivity and mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emer, Enrico</creatorcontrib><creatorcontrib>Sinisi, Riccardo</creatorcontrib><creatorcontrib>Capdevila, Montse Guiteras</creatorcontrib><creatorcontrib>Petruzziello, Diego</creatorcontrib><creatorcontrib>De Vincentiis, Francesco</creatorcontrib><creatorcontrib>Cozzi, Pier Giorgio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>European Journal of Organic Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emer, Enrico</au><au>Sinisi, Riccardo</au><au>Capdevila, Montse Guiteras</au><au>Petruzziello, Diego</au><au>De Vincentiis, Francesco</au><au>Cozzi, Pier Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Nucleophilic SN1-Type Reactions of Alcohols</atitle><jtitle>European Journal of Organic Chemistry</jtitle><addtitle>Eur. J. Org. Chem</addtitle><date>2011-02</date><risdate>2011</risdate><volume>2011</volume><issue>4</issue><spage>647</spage><epage>666</epage><pages>647-666</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>In 2005, the ACS Green Chemistry Institute (GCI) and the global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage the development of green chemistry and green engineering in the pharmaceutical industry. The Roundtable has established a list of key research areas including the direct nucleophilic reactions of alcohols. The substitution of activated alcohols is a frequently used approach for the preparation of active pharmaceutical ingredients. Alcohols are transformed into the reactive halides or sulfonate esters, thereby allowing their reaction with nucleophiles. Although the direct nucleophilic substitution of an alcohol should be an attractive process, as one of the byproducts from the reaction yields water, hydroxide is a poor leaving group that hinders the reaction. Recently, the direct substitution of allylic, benzylic, and tertiary alcohols has been achieved through an SN1 reaction with catalytic amounts of Brønsted or Lewis acids. In this review, the approaches leading to a greener process are examined in detail, and the advances achieved to date in this important transformation are presented.
In the cool of the pool! A catalytic amount of Brønsted and Lewis acids can be used in the direct nucleophilic SN1‐type reactions of alcohols with various nucleophiles. Water is the byproduct of this useful reaction.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejoc.201001474</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-193X |
ispartof | European Journal of Organic Chemistry, 2011-02, Vol.2011 (4), p.647-666 |
issn | 1434-193X 1099-0690 |
language | eng |
recordid | cdi_pascalfrancis_primary_23794448 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alcohols Brønsted acids Chemistry Exact sciences and technology Green chemistry Kinetics and mechanisms Lewis acids Nucleophilic substitution Organic chemistry Reactivity and mechanisms |
title | Direct Nucleophilic SN1-Type Reactions of Alcohols |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Nucleophilic%20SN1-Type%20Reactions%20of%20Alcohols&rft.jtitle=European%20Journal%20of%20Organic%20Chemistry&rft.au=Emer,%20Enrico&rft.date=2011-02&rft.volume=2011&rft.issue=4&rft.spage=647&rft.epage=666&rft.pages=647-666&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.201001474&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_2GJ8XB5R_F%3C/istex_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2544-f64555617f7cc304fa14cdfdbf515c2078639d19b412a1600bc652cebcae07703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |