Loading…
Cavity Flow Assessment Using Advanced Turbulence Methods
The vortex shedding generated by compressible subsonic flow interacting with a wall cavity has been investigated using large-eddy-simulation-based turbulence techniques embedded within a legacy Reynolds-averaged Navier- Stokes solver. Cavity simulations using hybrid turbulence approaches seek the ac...
Saved in:
Published in: | Journal of aircraft 2011-01, Vol.48 (1), p.141-156 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363 |
---|---|
cites | cdi_FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363 |
container_end_page | 156 |
container_issue | 1 |
container_start_page | 141 |
container_title | Journal of aircraft |
container_volume | 48 |
creator | Liggett, Nicholas D Smith, Marilyn J |
description | The vortex shedding generated by compressible subsonic flow interacting with a wall cavity has been investigated using large-eddy-simulation-based turbulence techniques embedded within a legacy Reynolds-averaged Navier- Stokes solver. Cavity simulations using hybrid turbulence approaches seek the accuracy of large-eddy simulation by providing filtering and modeling of subgrid-scale turbulence with the cost of traditional Reynolds-averaged Navier- Stokes. Simulations applying differing techniques of hybridization of the Menter k-... shear stress transport Reynolds-averaged Navier-Stokes approach include detached eddy simulation (DES-SST), blended subgrid-scale turbulence models (GT-HRLES), and a self-adjusting large-eddy-simulation-very-large-eddy-simulation technique (KES) provide an understanding of differing hybrid approaches. Cavity flow results from Reynolds-averaged Navier-Stokes and hybrid simulations are compared with experiment and large-eddy simulation predictions. Evaluation of important flow characteristics illustrates the abilities of these advanced turbulence modeling techniques compared with traditional Reynolds-averaged Navier-Stokes models. Examination of the influence of the grid, time step, and simulation period demonstrates the sensitivity of the aerodynamic and aeroacoustic predictions to these parameters. In particular the subgrid-scale blended model, GT-HRLES, shows significant improvement in the ability to capture the acoustic signatures and flowfield features on a Reynolds-averaged Navier-Stokes or very-large-eddy-simulation grid compared with the other models. (ProQuest: ... denotes formulae/symbols omitted.) |
doi_str_mv | 10.2514/1.C031019 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23853961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269580081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsFYP_oMgKHhI3clmv44lWBUqXtrzMs1uNCVN6m5S6b93pUUPnmYOzzwv8xJyDXSSccgfYFJQBhT0CRkBZyxlSqhTMqI0g1QJoc_JRQhrSqmiUo6IKnBX9_tk1nRfyTQEF8LGtX2yDHX7nkztDtvS2WQx-NXQuLgnr67_6Gy4JGcVNsFdHeeYLGePi-I5nb89vRTTeYoMZJ8Kt8pzy0TOtKtKtFwKiwoV5JpSJzPKbakYL1FzlDFJcKsqjTmuQGeUCTYmNwfv1nefgwu9WXeDb2OkUTzjUoNUEbo_QKXvQvCuMltfb9DvDVDz04sBc-wlsrdHIYYSm8rHD-vwe5AxxZkWELm7A4c14l_of-E3LHJsAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852579178</pqid></control><display><type>article</type><title>Cavity Flow Assessment Using Advanced Turbulence Methods</title><source>Alma/SFX Local Collection</source><creator>Liggett, Nicholas D ; Smith, Marilyn J</creator><creatorcontrib>Liggett, Nicholas D ; Smith, Marilyn J</creatorcontrib><description>The vortex shedding generated by compressible subsonic flow interacting with a wall cavity has been investigated using large-eddy-simulation-based turbulence techniques embedded within a legacy Reynolds-averaged Navier- Stokes solver. Cavity simulations using hybrid turbulence approaches seek the accuracy of large-eddy simulation by providing filtering and modeling of subgrid-scale turbulence with the cost of traditional Reynolds-averaged Navier- Stokes. Simulations applying differing techniques of hybridization of the Menter k-... shear stress transport Reynolds-averaged Navier-Stokes approach include detached eddy simulation (DES-SST), blended subgrid-scale turbulence models (GT-HRLES), and a self-adjusting large-eddy-simulation-very-large-eddy-simulation technique (KES) provide an understanding of differing hybrid approaches. Cavity flow results from Reynolds-averaged Navier-Stokes and hybrid simulations are compared with experiment and large-eddy simulation predictions. Evaluation of important flow characteristics illustrates the abilities of these advanced turbulence modeling techniques compared with traditional Reynolds-averaged Navier-Stokes models. Examination of the influence of the grid, time step, and simulation period demonstrates the sensitivity of the aerodynamic and aeroacoustic predictions to these parameters. In particular the subgrid-scale blended model, GT-HRLES, shows significant improvement in the ability to capture the acoustic signatures and flowfield features on a Reynolds-averaged Navier-Stokes or very-large-eddy-simulation grid compared with the other models. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C031019</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Accuracy ; Acoustics ; Aeroacoustics, atmospheric sound ; Aerodynamics ; Comparative analysis ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Reynolds equation ; Shear stress ; Simulation ; Turbulence models ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of aircraft, 2011-01, Vol.48 (1), p.141-156</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jan/Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363</citedby><cites>FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23853961$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liggett, Nicholas D</creatorcontrib><creatorcontrib>Smith, Marilyn J</creatorcontrib><title>Cavity Flow Assessment Using Advanced Turbulence Methods</title><title>Journal of aircraft</title><description>The vortex shedding generated by compressible subsonic flow interacting with a wall cavity has been investigated using large-eddy-simulation-based turbulence techniques embedded within a legacy Reynolds-averaged Navier- Stokes solver. Cavity simulations using hybrid turbulence approaches seek the accuracy of large-eddy simulation by providing filtering and modeling of subgrid-scale turbulence with the cost of traditional Reynolds-averaged Navier- Stokes. Simulations applying differing techniques of hybridization of the Menter k-... shear stress transport Reynolds-averaged Navier-Stokes approach include detached eddy simulation (DES-SST), blended subgrid-scale turbulence models (GT-HRLES), and a self-adjusting large-eddy-simulation-very-large-eddy-simulation technique (KES) provide an understanding of differing hybrid approaches. Cavity flow results from Reynolds-averaged Navier-Stokes and hybrid simulations are compared with experiment and large-eddy simulation predictions. Evaluation of important flow characteristics illustrates the abilities of these advanced turbulence modeling techniques compared with traditional Reynolds-averaged Navier-Stokes models. Examination of the influence of the grid, time step, and simulation period demonstrates the sensitivity of the aerodynamic and aeroacoustic predictions to these parameters. In particular the subgrid-scale blended model, GT-HRLES, shows significant improvement in the ability to capture the acoustic signatures and flowfield features on a Reynolds-averaged Navier-Stokes or very-large-eddy-simulation grid compared with the other models. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aerodynamics</subject><subject>Comparative analysis</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Reynolds equation</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Turbulence models</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplkE1Lw0AQhhdRsFYP_oMgKHhI3clmv44lWBUqXtrzMs1uNCVN6m5S6b93pUUPnmYOzzwv8xJyDXSSccgfYFJQBhT0CRkBZyxlSqhTMqI0g1QJoc_JRQhrSqmiUo6IKnBX9_tk1nRfyTQEF8LGtX2yDHX7nkztDtvS2WQx-NXQuLgnr67_6Gy4JGcVNsFdHeeYLGePi-I5nb89vRTTeYoMZJ8Kt8pzy0TOtKtKtFwKiwoV5JpSJzPKbakYL1FzlDFJcKsqjTmuQGeUCTYmNwfv1nefgwu9WXeDb2OkUTzjUoNUEbo_QKXvQvCuMltfb9DvDVDz04sBc-wlsrdHIYYSm8rHD-vwe5AxxZkWELm7A4c14l_of-E3LHJsAA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Liggett, Nicholas D</creator><creator>Smith, Marilyn J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>201101</creationdate><title>Cavity Flow Assessment Using Advanced Turbulence Methods</title><author>Liggett, Nicholas D ; Smith, Marilyn J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aerodynamics</topic><topic>Comparative analysis</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Reynolds equation</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Turbulence models</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liggett, Nicholas D</creatorcontrib><creatorcontrib>Smith, Marilyn J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liggett, Nicholas D</au><au>Smith, Marilyn J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity Flow Assessment Using Advanced Turbulence Methods</atitle><jtitle>Journal of aircraft</jtitle><date>2011-01</date><risdate>2011</risdate><volume>48</volume><issue>1</issue><spage>141</spage><epage>156</epage><pages>141-156</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>The vortex shedding generated by compressible subsonic flow interacting with a wall cavity has been investigated using large-eddy-simulation-based turbulence techniques embedded within a legacy Reynolds-averaged Navier- Stokes solver. Cavity simulations using hybrid turbulence approaches seek the accuracy of large-eddy simulation by providing filtering and modeling of subgrid-scale turbulence with the cost of traditional Reynolds-averaged Navier- Stokes. Simulations applying differing techniques of hybridization of the Menter k-... shear stress transport Reynolds-averaged Navier-Stokes approach include detached eddy simulation (DES-SST), blended subgrid-scale turbulence models (GT-HRLES), and a self-adjusting large-eddy-simulation-very-large-eddy-simulation technique (KES) provide an understanding of differing hybrid approaches. Cavity flow results from Reynolds-averaged Navier-Stokes and hybrid simulations are compared with experiment and large-eddy simulation predictions. Evaluation of important flow characteristics illustrates the abilities of these advanced turbulence modeling techniques compared with traditional Reynolds-averaged Navier-Stokes models. Examination of the influence of the grid, time step, and simulation period demonstrates the sensitivity of the aerodynamic and aeroacoustic predictions to these parameters. In particular the subgrid-scale blended model, GT-HRLES, shows significant improvement in the ability to capture the acoustic signatures and flowfield features on a Reynolds-averaged Navier-Stokes or very-large-eddy-simulation grid compared with the other models. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C031019</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8669 |
ispartof | Journal of aircraft, 2011-01, Vol.48 (1), p.141-156 |
issn | 0021-8669 1533-3868 |
language | eng |
recordid | cdi_pascalfrancis_primary_23853961 |
source | Alma/SFX Local Collection |
subjects | Accuracy Acoustics Aeroacoustics, atmospheric sound Aerodynamics Comparative analysis Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Reynolds equation Shear stress Simulation Turbulence models Turbulence simulation and modeling Turbulent flows, convection, and heat transfer |
title | Cavity Flow Assessment Using Advanced Turbulence Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20Flow%20Assessment%20Using%20Advanced%20Turbulence%20Methods&rft.jtitle=Journal%20of%20aircraft&rft.au=Liggett,%20Nicholas%20D&rft.date=2011-01&rft.volume=48&rft.issue=1&rft.spage=141&rft.epage=156&rft.pages=141-156&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C031019&rft_dat=%3Cproquest_pasca%3E2269580081%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a317t-6eb44d36439efcad576da8a814900e7205dc835ca95a7ced65d8f9a4ab1920363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=852579178&rft_id=info:pmid/&rfr_iscdi=true |