Loading…
Indirect interband transition in hexagonal GaN
In this paper, we report on optical investigations with Raman experiment to underline a new ultraviolet (UV) luminescence band in hexagonal gallium nitride (GaN) at 4.56 eV. GaN is a direct band gap semiconductor, the photoluminescence peak corresponding to the energy gap at 3.43 eV dominates the sp...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2011-02, Vol.44 (7), p.075105 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report on optical investigations with Raman experiment to underline a new ultraviolet (UV) luminescence band in hexagonal gallium nitride (GaN) at 4.56 eV. GaN is a direct band gap semiconductor, the photoluminescence peak corresponding to the energy gap at 3.43 eV dominates the spectrum. Nevertheless, other electronic interband transitions can appear on the spectrum: the electronic indirect interband transitions. We attribute one of them to the observed new photoluminescence band at 4.56 eV. This interpretation is supported by photoluminescence spectra obtained on three different samples at room temperature and at −50 °C with UV excitation source: mbd-266 nm solid laser (4.66 eV) and by the study of three criteria: the partly opposite parities of initial and final wave function, the implication of acoustic phonons and temperature control. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/44/7/075105 |