Loading…

Indirect interband transition in hexagonal GaN

In this paper, we report on optical investigations with Raman experiment to underline a new ultraviolet (UV) luminescence band in hexagonal gallium nitride (GaN) at 4.56 eV. GaN is a direct band gap semiconductor, the photoluminescence peak corresponding to the energy gap at 3.43 eV dominates the sp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2011-02, Vol.44 (7), p.075105
Main Authors: Lancry, O, Farvacque, J-L, Pichonat, E, Gaquière, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we report on optical investigations with Raman experiment to underline a new ultraviolet (UV) luminescence band in hexagonal gallium nitride (GaN) at 4.56 eV. GaN is a direct band gap semiconductor, the photoluminescence peak corresponding to the energy gap at 3.43 eV dominates the spectrum. Nevertheless, other electronic interband transitions can appear on the spectrum: the electronic indirect interband transitions. We attribute one of them to the observed new photoluminescence band at 4.56 eV. This interpretation is supported by photoluminescence spectra obtained on three different samples at room temperature and at −50 °C with UV excitation source: mbd-266 nm solid laser (4.66 eV) and by the study of three criteria: the partly opposite parities of initial and final wave function, the implication of acoustic phonons and temperature control.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/44/7/075105