Loading…
An Analytical Approach for a Novel Coupled-Line Dual-Band Wilkinson Power Divider
A novel generalized coupled-line circuit structure for a dual-band Wilkinson power divider is proposed. The proposed power divider is composed of two coupled lines with different even- and odd-mode characteristic impedances and two lumped resistors. Using rigorous even- and odd-mode analysis, the an...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2011-02, Vol.59 (2), p.286-294 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel generalized coupled-line circuit structure for a dual-band Wilkinson power divider is proposed. The proposed power divider is composed of two coupled lines with different even- and odd-mode characteristic impedances and two lumped resistors. Using rigorous even- and odd-mode analysis, the analytical design equations for this proposed power divider are obtained and the ideal closed-form scattering parameters are constructed. Since the traditional transmission line is a special case of coupled line (coupled coefficient is zero), it is found that traditional noncoupled-line dual-band (including single band) Wilkinson power dividers and previous dual-band coupled-line power dividers are special cases of this generalized power divider. As a typical example, which could only be designed by using this given design equations, a compact microstrip 3-dB power divider operating at both 1.1 and 2.2 GHz is designed, fabricated, and measured. There is good agreement between calculated and measured results. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2010.2084096 |