Loading…
Monte Carlo optimization of superconducting complementary output switching logic circuits
The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite o...
Saved in:
Published in: | IEEE transactions on applied superconductivity 1998-09, Vol.8 (3), p.104-119 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3 |
container_end_page | 119 |
container_issue | 3 |
container_start_page | 104 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 8 |
creator | Jeffery, M. Perold, W.J. Zuoqin Wang van Duzer, T. |
description | The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix. |
doi_str_mv | 10.1109/77.712141 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2392899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>712141</ieee_id><sourcerecordid>28378086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4evHrKQQQPXfPZpEdZ1g9Y8aIHTyU7TddI29QkRfTX26XLnmbgfeaBeRG6pGRBKSnulFooyqigR2hGpdQZk1QejzuRNNOM8VN0FuMXIVRoIWfo48V3yeKlCY3Hvk-udX8mOd9hX-M49DaA76oBkuu2GHzbN7a1XTLhF_sh9UPC8ccl-NzFjd86wOACDC7Fc3RSmybai_2co_eH1dvyKVu_Pj4v79cZcMVSBiYHEAWvNpWpBeE6FzUxFGoCgleVZRtqcmsMKUxOuBQbLpQUWtJKAgCr-BzdTN4--O_BxlS2LoJtGtNZP8SSaa400fkI3k4gBB9jsHXZB9eOn5SUlLvySqXKqbyRvd5LTQTT1MF04OLhgPGC6aIYsasJc9baQ7p3_ANHbHkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28378086</pqid></control><display><type>article</type><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</creator><creatorcontrib>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</creatorcontrib><description>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.712141</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Circuit simulation ; Clocks ; Design optimization ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Frequency ; Integrated circuits ; Josephson junctions ; Logic circuits ; Logic design ; Monte Carlo methods ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting logic circuits ; Switching, multiplexing, switched capacity circuits ; Voltage</subject><ispartof>IEEE transactions on applied superconductivity, 1998-09, Vol.8 (3), p.104-119</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</citedby><cites>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/712141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2392899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeffery, M.</creatorcontrib><creatorcontrib>Perold, W.J.</creatorcontrib><creatorcontrib>Zuoqin Wang</creatorcontrib><creatorcontrib>van Duzer, T.</creatorcontrib><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuit simulation</subject><subject>Clocks</subject><subject>Design optimization</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Integrated circuits</subject><subject>Josephson junctions</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Monte Carlo methods</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting logic circuits</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4evHrKQQQPXfPZpEdZ1g9Y8aIHTyU7TddI29QkRfTX26XLnmbgfeaBeRG6pGRBKSnulFooyqigR2hGpdQZk1QejzuRNNOM8VN0FuMXIVRoIWfo48V3yeKlCY3Hvk-udX8mOd9hX-M49DaA76oBkuu2GHzbN7a1XTLhF_sh9UPC8ccl-NzFjd86wOACDC7Fc3RSmybai_2co_eH1dvyKVu_Pj4v79cZcMVSBiYHEAWvNpWpBeE6FzUxFGoCgleVZRtqcmsMKUxOuBQbLpQUWtJKAgCr-BzdTN4--O_BxlS2LoJtGtNZP8SSaa400fkI3k4gBB9jsHXZB9eOn5SUlLvySqXKqbyRvd5LTQTT1MF04OLhgPGC6aIYsasJc9baQ7p3_ANHbHkG</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Jeffery, M.</creator><creator>Perold, W.J.</creator><creator>Zuoqin Wang</creator><creator>van Duzer, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><author>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuit simulation</topic><topic>Clocks</topic><topic>Design optimization</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Integrated circuits</topic><topic>Josephson junctions</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Monte Carlo methods</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting logic circuits</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeffery, M.</creatorcontrib><creatorcontrib>Perold, W.J.</creatorcontrib><creatorcontrib>Zuoqin Wang</creatorcontrib><creatorcontrib>van Duzer, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeffery, M.</au><au>Perold, W.J.</au><au>Zuoqin Wang</au><au>van Duzer, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo optimization of superconducting complementary output switching logic circuits</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>8</volume><issue>3</issue><spage>104</spage><epage>119</epage><pages>104-119</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.712141</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 1998-09, Vol.8 (3), p.104-119 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_pascalfrancis_primary_2392899 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Circuit properties Circuit simulation Clocks Design optimization Design. Technologies. Operation analysis. Testing Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Frequency Integrated circuits Josephson junctions Logic circuits Logic design Monte Carlo methods Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Superconducting logic circuits Switching, multiplexing, switched capacity circuits Voltage |
title | Monte Carlo optimization of superconducting complementary output switching logic circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20optimization%20of%20superconducting%20complementary%20output%20switching%20logic%20circuits&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Jeffery,%20M.&rft.date=1998-09-01&rft.volume=8&rft.issue=3&rft.spage=104&rft.epage=119&rft.pages=104-119&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.712141&rft_dat=%3Cproquest_pasca%3E28378086%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28378086&rft_id=info:pmid/&rft_ieee_id=712141&rfr_iscdi=true |