Loading…

Monte Carlo optimization of superconducting complementary output switching logic circuits

The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 1998-09, Vol.8 (3), p.104-119
Main Authors: Jeffery, M., Perold, W.J., Zuoqin Wang, van Duzer, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3
cites cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3
container_end_page 119
container_issue 3
container_start_page 104
container_title IEEE transactions on applied superconductivity
container_volume 8
creator Jeffery, M.
Perold, W.J.
Zuoqin Wang
van Duzer, T.
description The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.
doi_str_mv 10.1109/77.712141
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2392899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>712141</ieee_id><sourcerecordid>28378086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4evHrKQQQPXfPZpEdZ1g9Y8aIHTyU7TddI29QkRfTX26XLnmbgfeaBeRG6pGRBKSnulFooyqigR2hGpdQZk1QejzuRNNOM8VN0FuMXIVRoIWfo48V3yeKlCY3Hvk-udX8mOd9hX-M49DaA76oBkuu2GHzbN7a1XTLhF_sh9UPC8ccl-NzFjd86wOACDC7Fc3RSmybai_2co_eH1dvyKVu_Pj4v79cZcMVSBiYHEAWvNpWpBeE6FzUxFGoCgleVZRtqcmsMKUxOuBQbLpQUWtJKAgCr-BzdTN4--O_BxlS2LoJtGtNZP8SSaa400fkI3k4gBB9jsHXZB9eOn5SUlLvySqXKqbyRvd5LTQTT1MF04OLhgPGC6aIYsasJc9baQ7p3_ANHbHkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28378086</pqid></control><display><type>article</type><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</creator><creatorcontrib>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</creatorcontrib><description>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.712141</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Circuit simulation ; Clocks ; Design optimization ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Frequency ; Integrated circuits ; Josephson junctions ; Logic circuits ; Logic design ; Monte Carlo methods ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting logic circuits ; Switching, multiplexing, switched capacity circuits ; Voltage</subject><ispartof>IEEE transactions on applied superconductivity, 1998-09, Vol.8 (3), p.104-119</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</citedby><cites>FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/712141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2392899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeffery, M.</creatorcontrib><creatorcontrib>Perold, W.J.</creatorcontrib><creatorcontrib>Zuoqin Wang</creatorcontrib><creatorcontrib>van Duzer, T.</creatorcontrib><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuit simulation</subject><subject>Clocks</subject><subject>Design optimization</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Integrated circuits</subject><subject>Josephson junctions</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Monte Carlo methods</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting logic circuits</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK4evHrKQQQPXfPZpEdZ1g9Y8aIHTyU7TddI29QkRfTX26XLnmbgfeaBeRG6pGRBKSnulFooyqigR2hGpdQZk1QejzuRNNOM8VN0FuMXIVRoIWfo48V3yeKlCY3Hvk-udX8mOd9hX-M49DaA76oBkuu2GHzbN7a1XTLhF_sh9UPC8ccl-NzFjd86wOACDC7Fc3RSmybai_2co_eH1dvyKVu_Pj4v79cZcMVSBiYHEAWvNpWpBeE6FzUxFGoCgleVZRtqcmsMKUxOuBQbLpQUWtJKAgCr-BzdTN4--O_BxlS2LoJtGtNZP8SSaa400fkI3k4gBB9jsHXZB9eOn5SUlLvySqXKqbyRvd5LTQTT1MF04OLhgPGC6aIYsasJc9baQ7p3_ANHbHkG</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Jeffery, M.</creator><creator>Perold, W.J.</creator><creator>Zuoqin Wang</creator><creator>van Duzer, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Monte Carlo optimization of superconducting complementary output switching logic circuits</title><author>Jeffery, M. ; Perold, W.J. ; Zuoqin Wang ; van Duzer, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuit simulation</topic><topic>Clocks</topic><topic>Design optimization</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Integrated circuits</topic><topic>Josephson junctions</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Monte Carlo methods</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting logic circuits</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeffery, M.</creatorcontrib><creatorcontrib>Perold, W.J.</creatorcontrib><creatorcontrib>Zuoqin Wang</creatorcontrib><creatorcontrib>van Duzer, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeffery, M.</au><au>Perold, W.J.</au><au>Zuoqin Wang</au><au>van Duzer, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo optimization of superconducting complementary output switching logic circuits</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>8</volume><issue>3</issue><spage>104</spage><epage>119</epage><pages>104-119</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The authors have previously proposed a new superconducting voltage-state logic family called complementary output switching logic (COSL). This logic family has been designed using a Monte Carlo optimization process such that circuits have a high theoretical yield at 5-10 Gb/s clock speeds in spite of existing Josephson process variations. In the present work the Monte Carlo optimization process is described and theoretical yields are calculated for the COSL 2- and 3-bit encoder circuits. The circuit simulations use 5-10-GHz sinusoidal clocks and measured global and local process variations. The 2-bit encoder results are compared to modified variable threshold logic (MVTL) circuits and demonstrate that COSL circuits should have a significantly higher theoretical yield than MVTL at 10 Gb/s. Design rules for optimal COSL circuit layouts are also given, and experimental data are presented for 2-bit encoder circuits operating at multigigahertz clock frequencies. HSPICE is used for all Monte Carlo simulations and the Josephson junction model is given in the Appendix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.712141</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 1998-09, Vol.8 (3), p.104-119
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_2392899
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Circuit properties
Circuit simulation
Clocks
Design optimization
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Frequency
Integrated circuits
Josephson junctions
Logic circuits
Logic design
Monte Carlo methods
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting logic circuits
Switching, multiplexing, switched capacity circuits
Voltage
title Monte Carlo optimization of superconducting complementary output switching logic circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20optimization%20of%20superconducting%20complementary%20output%20switching%20logic%20circuits&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Jeffery,%20M.&rft.date=1998-09-01&rft.volume=8&rft.issue=3&rft.spage=104&rft.epage=119&rft.pages=104-119&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.712141&rft_dat=%3Cproquest_pasca%3E28378086%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-ca6cc493dbdaf403864f0a1cf0c43dde2b1a6eaa09a60354b34754851d5ccc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28378086&rft_id=info:pmid/&rft_ieee_id=712141&rfr_iscdi=true