Loading…
Computing observability don't cares efficiently through polarization
A new method is presented to compute the exact observability don't cares (ODCs) for multiple-level combinational circuits. A new mathematical concept, called polarization, is introduced. Polarization captures the essence of ODC calculation on the otherwise difficult points of reconvergence. It...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 1998-07, Vol.17 (7), p.573-581 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new method is presented to compute the exact observability don't cares (ODCs) for multiple-level combinational circuits. A new mathematical concept, called polarization, is introduced. Polarization captures the essence of ODC calculation on the otherwise difficult points of reconvergence. It makes it possible to derive the ODC of a node from the ODCs of its fanouts with a very simple formula. Experimental results for the 39 largest MCNC benchmark examples show that the method is able to compute the ODC set (expressed as a Boolean network) for all but one circuit in at most a few seconds. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/43.709395 |