Loading…

Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process

The mean-reverting square root process with jump has been widely used as a model on the financial market. Since the diffusion coefficient in the model does not satisfy the linear growth condition and local Lipschitz condition, we can not examine its properties by traditional techniques. To overcome...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic analysis and applications 2011-03, Vol.29 (2), p.216-236
Main Authors: Jiang, Feng, Shen, Yi, Wu, Fuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423
cites cdi_FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423
container_end_page 236
container_issue 2
container_start_page 216
container_title Stochastic analysis and applications
container_volume 29
creator Jiang, Feng
Shen, Yi
Wu, Fuke
description The mean-reverting square root process with jump has been widely used as a model on the financial market. Since the diffusion coefficient in the model does not satisfy the linear growth condition and local Lipschitz condition, we can not examine its properties by traditional techniques. To overcome the difficulties, we develop several new techniques to examine the numerical method of jump models involving delay and mean-reverting square root. We show that the numerical approximate solutions converge to the true solutions. Finally, we apply the convergence to examine a path-dependent option price and a bond in the financial pricing.
doi_str_mv 10.1080/07362994.2011.532043
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24014018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869814734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423</originalsourceid><addsrcrecordid>eNp9kE1P4zAQhi3EShTYf8DBF7SnFH8lsU8IdT8AtQvq7p4tJ5mgIMdu7aTQf7-OChyRLI2led4ZzYPQBSVzSiS5IiUvmFJizgil85wzIvgRmtH0yxTPi2M0m5BsYk7QaYzPhBBFSTlD_cK7HYQncDVg3-LfYw-hq43FN5tN8K9db4bOO9z6gO_HfoNXvgEb8Z3bebvr3BP-DtbssXENXoFx2RrSuGFq_NmOJgBeez_gx-BriPEcfWmNjfD1rZ6hfz9__F3cZsuHX3eLm2VW80INWS4bAM6oMLKsCJdMCdOoCkRRNYSUkjIFpk29uik5y6uyBUkLKKHKU0Mwfoa-HeamE7YjxEH3XazBWuPAj1HLQkkqSi4SKQ5kHXyMAVq9CenmsNeU6EmufperJ7n6IDfFLt8WmJhktcG4uosfWSYITU8m7vrAdS4Z7M2LD7bRg9lbH95D_NNN_wES8I6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869814734</pqid></control><display><type>article</type><title>Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process</title><source>Taylor and Francis Science and Technology Collection</source><creator>Jiang, Feng ; Shen, Yi ; Wu, Fuke</creator><creatorcontrib>Jiang, Feng ; Shen, Yi ; Wu, Fuke</creatorcontrib><description>The mean-reverting square root process with jump has been widely used as a model on the financial market. Since the diffusion coefficient in the model does not satisfy the linear growth condition and local Lipschitz condition, we can not examine its properties by traditional techniques. To overcome the difficulties, we develop several new techniques to examine the numerical method of jump models involving delay and mean-reverting square root. We show that the numerical approximate solutions converge to the true solutions. Finally, we apply the convergence to examine a path-dependent option price and a bond in the financial pricing.</description><identifier>ISSN: 0736-2994</identifier><identifier>EISSN: 1532-9356</identifier><identifier>DOI: 10.1080/07362994.2011.532043</identifier><identifier>CODEN: SAAPDA</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Applications ; Approximation ; Bonding ; Compensated Poisson process ; Convergence ; Delay ; Euler-Maruyama method ; Exact sciences and technology ; Insurance, economics, finance ; Lipschitz condition ; Markov processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Mean-reverting square root process ; Probability and statistics ; Probability theory and stochastic processes ; Roots ; Sciences and techniques of general use ; Statistics ; Stochastic analysis ; Stochastic processes ; Strong convergence</subject><ispartof>Stochastic analysis and applications, 2011-03, Vol.29 (2), p.216-236</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423</citedby><cites>FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24014018$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Wu, Fuke</creatorcontrib><title>Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process</title><title>Stochastic analysis and applications</title><description>The mean-reverting square root process with jump has been widely used as a model on the financial market. Since the diffusion coefficient in the model does not satisfy the linear growth condition and local Lipschitz condition, we can not examine its properties by traditional techniques. To overcome the difficulties, we develop several new techniques to examine the numerical method of jump models involving delay and mean-reverting square root. We show that the numerical approximate solutions converge to the true solutions. Finally, we apply the convergence to examine a path-dependent option price and a bond in the financial pricing.</description><subject>Applications</subject><subject>Approximation</subject><subject>Bonding</subject><subject>Compensated Poisson process</subject><subject>Convergence</subject><subject>Delay</subject><subject>Euler-Maruyama method</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Lipschitz condition</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mean-reverting square root process</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Roots</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic analysis</subject><subject>Stochastic processes</subject><subject>Strong convergence</subject><issn>0736-2994</issn><issn>1532-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P4zAQhi3EShTYf8DBF7SnFH8lsU8IdT8AtQvq7p4tJ5mgIMdu7aTQf7-OChyRLI2led4ZzYPQBSVzSiS5IiUvmFJizgil85wzIvgRmtH0yxTPi2M0m5BsYk7QaYzPhBBFSTlD_cK7HYQncDVg3-LfYw-hq43FN5tN8K9db4bOO9z6gO_HfoNXvgEb8Z3bebvr3BP-DtbssXENXoFx2RrSuGFq_NmOJgBeez_gx-BriPEcfWmNjfD1rZ6hfz9__F3cZsuHX3eLm2VW80INWS4bAM6oMLKsCJdMCdOoCkRRNYSUkjIFpk29uik5y6uyBUkLKKHKU0Mwfoa-HeamE7YjxEH3XazBWuPAj1HLQkkqSi4SKQ5kHXyMAVq9CenmsNeU6EmufperJ7n6IDfFLt8WmJhktcG4uosfWSYITU8m7vrAdS4Z7M2LD7bRg9lbH95D_NNN_wES8I6E</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Jiang, Feng</creator><creator>Shen, Yi</creator><creator>Wu, Fuke</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201103</creationdate><title>Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process</title><author>Jiang, Feng ; Shen, Yi ; Wu, Fuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Bonding</topic><topic>Compensated Poisson process</topic><topic>Convergence</topic><topic>Delay</topic><topic>Euler-Maruyama method</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Lipschitz condition</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mean-reverting square root process</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Roots</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic analysis</topic><topic>Stochastic processes</topic><topic>Strong convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Wu, Fuke</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Stochastic analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Feng</au><au>Shen, Yi</au><au>Wu, Fuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process</atitle><jtitle>Stochastic analysis and applications</jtitle><date>2011-03</date><risdate>2011</risdate><volume>29</volume><issue>2</issue><spage>216</spage><epage>236</epage><pages>216-236</pages><issn>0736-2994</issn><eissn>1532-9356</eissn><coden>SAAPDA</coden><abstract>The mean-reverting square root process with jump has been widely used as a model on the financial market. Since the diffusion coefficient in the model does not satisfy the linear growth condition and local Lipschitz condition, we can not examine its properties by traditional techniques. To overcome the difficulties, we develop several new techniques to examine the numerical method of jump models involving delay and mean-reverting square root. We show that the numerical approximate solutions converge to the true solutions. Finally, we apply the convergence to examine a path-dependent option price and a bond in the financial pricing.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/07362994.2011.532043</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0736-2994
ispartof Stochastic analysis and applications, 2011-03, Vol.29 (2), p.216-236
issn 0736-2994
1532-9356
language eng
recordid cdi_pascalfrancis_primary_24014018
source Taylor and Francis Science and Technology Collection
subjects Applications
Approximation
Bonding
Compensated Poisson process
Convergence
Delay
Euler-Maruyama method
Exact sciences and technology
Insurance, economics, finance
Lipschitz condition
Markov processes
Mathematical analysis
Mathematical models
Mathematics
Mean-reverting square root process
Probability and statistics
Probability theory and stochastic processes
Roots
Sciences and techniques of general use
Statistics
Stochastic analysis
Stochastic processes
Strong convergence
title Convergence of Numerical Approximation for Jump Models Involving Delay and Mean-Reverting Square Root Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Numerical%20Approximation%20for%20Jump%20Models%20Involving%20Delay%20and%20Mean-Reverting%20Square%20Root%20Process&rft.jtitle=Stochastic%20analysis%20and%20applications&rft.au=Jiang,%20Feng&rft.date=2011-03&rft.volume=29&rft.issue=2&rft.spage=216&rft.epage=236&rft.pages=216-236&rft.issn=0736-2994&rft.eissn=1532-9356&rft.coden=SAAPDA&rft_id=info:doi/10.1080/07362994.2011.532043&rft_dat=%3Cproquest_pasca%3E869814734%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-58dee3214a87b038294ad9be46bd0078129eaf87bcd7325b7fe816e7eb59ea423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869814734&rft_id=info:pmid/&rfr_iscdi=true