Loading…
Finite element analysis of adaptive atom-optical mirrors
We present finite element analysis of the deflections of clamped, ultrathin single crystals under electrostatic pressure. The crystals form concave mirrors that are suitable for low-aberration reflective focusing of inert atom beams, such as those required for the construction of a scanning helium m...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2011-05, Vol.44 (18), p.185501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present finite element analysis of the deflections of clamped, ultrathin single crystals under electrostatic pressure. The crystals form concave mirrors that are suitable for low-aberration reflective focusing of inert atom beams, such as those required for the construction of a scanning helium microscope. The electrostatic and elastic aspects of the problem are coupled in the simulation. Additionally, realistic inhomogeneities in the crystal thickness are considered and it is shown that adaptive optic protocols using a minimal number of optimized electrodes can correct the resultant mirror aberrations. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/44/18/185501 |